메뉴 건너뛰기




Volumn 13, Issue 1, 2012, Pages

Consensus embedding: Theory, algorithms and application to segmentation and classification of biomedical data

Author keywords

[No Author keywords available]

Indexed keywords

BIAS FIELD INHOMOGENEITY; BIOMEDICAL DATA ANALYSIS; CLASSIFICATION AND CLUSTERING; DIMENSIONALITY REDUCTION; EFFICIENT IMPLEMENTATION; ENSEMBLE CLASSIFICATION; HIGHER DIMENSIONAL FEATURES; LOCALLY LINEAR EMBEDDING;

EID: 84856592123     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-13-26     Document Type: Article
Times cited : (8)

References (56)
  • 4
    • 49249124314 scopus 로고    scopus 로고
    • Investigating the Efficacy of Nonlinear Dimensionality Reduction Schemes in Classifying Gene- and Protein-Expression Studies
    • Lee G, Rodriguez C, Madabhushi A. Investigating the Efficacy of Nonlinear Dimensionality Reduction Schemes in Classifying Gene- and Protein-Expression Studies. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2008, 5(3):1-17.
    • (2008) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.5 , Issue.3 , pp. 1-17
    • Lee, G.1    Rodriguez, C.2    Madabhushi, A.3
  • 5
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: unsupervised learning of low dimensional manifolds
    • Saul L, Roweis S. Think globally, fit locally: unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research 2003, 4:119-155.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 119-155
    • Saul, L.1    Roweis, S.2
  • 7
    • 0034704229 scopus 로고    scopus 로고
    • A Global Geometric Framework for Nonlinear Dimensionality Reduction
    • 10.1126/science.290.5500.2319, 11125149
    • Tenenbaum J, Silva V, Langford J. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 2000, 290(5500):2319-2323. 10.1126/science.290.5500.2319, 11125149.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    Silva, V.2    Langford, J.3
  • 8
    • 25444512607 scopus 로고    scopus 로고
    • Sample phenotype clusters in high-density oligonucleotide microarray data sets are revealed using Isomap, a nonlinear algorithm
    • 10.1186/1471-2105-6-195, 1189082, 16076401
    • Dawson K, Rodriguez R, Malyj W. Sample phenotype clusters in high-density oligonucleotide microarray data sets are revealed using Isomap, a nonlinear algorithm. BMC Bioinformatics 2005, 6(1):195. 10.1186/1471-2105-6-195, 1189082, 16076401.
    • (2005) BMC Bioinformatics , vol.6 , Issue.1 , pp. 195
    • Dawson, K.1    Rodriguez, R.2    Malyj, W.3
  • 10
    • 33745245049 scopus 로고    scopus 로고
    • Visual exploratory analysis of DCE-MRI data in breast cancer by dimensional data reduction: A comparative study
    • Varini C, Degenhard A, Nattkemper T. Visual exploratory analysis of DCE-MRI data in breast cancer by dimensional data reduction: A comparative study. Biomedical Signal Processing and Control 2006, 1(1):56-63.
    • (2006) Biomedical Signal Processing and Control , vol.1 , Issue.1 , pp. 56-63
    • Varini, C.1    Degenhard, A.2    Nattkemper, T.3
  • 13
    • 33644973537 scopus 로고    scopus 로고
    • Robust locally linear embedding
    • Chang H, Yeung D. Robust locally linear embedding. Pattern Recognition 2006, 39(6):1053-1065.
    • (2006) Pattern Recognition , vol.39 , Issue.6 , pp. 1053-1065
    • Chang, H.1    Yeung, D.2
  • 14
    • 33750222116 scopus 로고    scopus 로고
    • P-ISOMAP: A New ISOMAP-Based Data Visualization Algorithm with Less Sensitivity to the Neighborhood Size
    • Shao C, Huang H, Zhao L. P-ISOMAP: A New ISOMAP-Based Data Visualization Algorithm with Less Sensitivity to the Neighborhood Size. Dianzi Xuebao(Acta Electronica Sinica) 2006, 34(8):1497-1501.
    • (2006) Dianzi Xuebao(Acta Electronica Sinica) , vol.34 , Issue.8 , pp. 1497-1501
    • Shao, C.1    Huang, H.2    Zhao, L.3
  • 15
    • 21244468777 scopus 로고    scopus 로고
    • Combining Multiple Clusterings Using Evidence Accumulation
    • 10.1109/TPAMI.2005.113, 15943417
    • Fred A, Jain A. Combining Multiple Clusterings Using Evidence Accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence 2005, 27(6):835-850. 10.1109/TPAMI.2005.113, 15943417.
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.6 , pp. 835-850
    • Fred, A.1    Jain, A.2
  • 17
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996, 24(2):123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 20
    • 1942517297 scopus 로고    scopus 로고
    • Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach
    • Fern X, Brodley C. Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach. Proc 20th Int'l Conf Machine Learning 2003, 186-193.
    • (2003) Proc 20th Int'l Conf Machine Learning , pp. 186-193
    • Fern, X.1    Brodley, C.2
  • 21
    • 33746617306 scopus 로고    scopus 로고
    • Local multidimensional scaling
    • 10.1016/j.neunet.2006.05.014, 16787737
    • Venna J, Kaski S. Local multidimensional scaling. Neural Networks 2006, 19(6):889-899. 10.1016/j.neunet.2006.05.014, 16787737.
    • (2006) Neural Networks , vol.19 , Issue.6 , pp. 889-899
    • Venna, J.1    Kaski, S.2
  • 22
    • 33646162415 scopus 로고    scopus 로고
    • Selection of the optimal parameter value for the Isomap algorithm
    • Samko O, Marshall A, Rosin P. Selection of the optimal parameter value for the Isomap algorithm. Pattern Recognition Letters 2006, 27(9):968-979.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.9 , pp. 968-979
    • Samko, O.1    Marshall, A.2    Rosin, P.3
  • 32
    • 70449704123 scopus 로고    scopus 로고
    • Multiple view semi-supervised dimensionality reduction
    • Hou C, Zhang C, Wu Y, Nie F. Multiple view semi-supervised dimensionality reduction. Pattern Recognition 2009, 43(3):720-730.
    • (2009) Pattern Recognition , vol.43 , Issue.3 , pp. 720-730
    • Hou, C.1    Zhang, C.2    Wu, Y.3    Nie, F.4
  • 48
    • 0346076622 scopus 로고    scopus 로고
    • Normalized cuts in 3-D for spinal MRI segmentation
    • 10.1109/TMI.2003.819929, 14719685
    • Carballido-Gamio J, Belongie S, Majumdar S. Normalized cuts in 3-D for spinal MRI segmentation. IEEE Transactions on Medical Imaging 2004, 23(1):36-44. 10.1109/TMI.2003.819929, 14719685.
    • (2004) IEEE Transactions on Medical Imaging , vol.23 , Issue.1 , pp. 36-44
    • Carballido-Gamio, J.1    Belongie, S.2    Majumdar, S.3
  • 49
    • 0033233097 scopus 로고    scopus 로고
    • MRI simulation-based evaluation of image-processing and classification methods
    • 10.1109/42.816072, 10661326
    • Kwan R, Evans A, Pike G. MRI simulation-based evaluation of image-processing and classification methods. IEEE Transactions on Medical Imaging 1999, 18(11):1085-1097. 10.1109/42.816072, 10661326.
    • (1999) IEEE Transactions on Medical Imaging , vol.18 , Issue.11 , pp. 1085-1097
    • Kwan, R.1    Evans, A.2    Pike, G.3
  • 50
    • 79953658884 scopus 로고    scopus 로고
    • Elastic registration of multimodal prostate MRI and histology via multiattribute combined mutual information
    • 10.1118/1.3560879, 3078156, 21626933
    • Chappelow J, Bloch BN, Rofsky N, Genega E, Lenkinski R, DeWolf W, Madabhushi A. Elastic registration of multimodal prostate MRI and histology via multiattribute combined mutual information. Medical Physics 2011, 38(4):2005-2018. 10.1118/1.3560879, 3078156, 21626933.
    • (2011) Medical Physics , vol.38 , Issue.4 , pp. 2005-2018
    • Chappelow, J.1    Bloch, B.N.2    Rofsky, N.3    Genega, E.4    Lenkinski, R.5    DeWolf, W.6    Madabhushi, A.7
  • 51
    • 0038021028 scopus 로고    scopus 로고
    • A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
    • Liu H, Li J, Wong L. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Informatics 2002, 13:51-60.
    • (2002) Genome Informatics , vol.13 , pp. 51-60
    • Liu, H.1    Li, J.2    Wong, L.3
  • 52
    • 33748412877 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with graph embedding
    • Zhao H. Combining labeled and unlabeled data with graph embedding. Neurocomputing 2006, 69(16):2385-2389.
    • (2006) Neurocomputing , vol.69 , Issue.16 , pp. 2385-2389
    • Zhao, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.