메뉴 건너뛰기




Volumn 9, Issue , 2010, Pages 501-508

Supervised dimension reduction using Bayesian mixture modeling

Author keywords

Dirichlet process; Factor models; Grassman manifold; Inverse regression; Supervised dimension reduction

Indexed keywords

DIMENSION REDUCTION; DIRICHLET PROCESS; FACTOR MODEL; GRASSMAN MANIFOLD; INVERSE REGRESSION;

EID: 84862284396     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (10)

References (38)
  • 1
    • 1442336159 scopus 로고    scopus 로고
    • Riemannian geometry of grassmann manifolds with a view on algorithmic computation
    • Absil, P.-A., R. Mahony, and R. Sepulchre (2004). Riemannian geometry of grassmann manifolds with a view on algorithmic computation. Acta Applicandae Mathematicae, 199-220.
    • (2004) Acta Applicandae Mathematicae , pp. 199-220
    • Absil, P.-A.1    Mahony, R.2    Sepulchre, R.3
  • 2
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on riemannian manifolds
    • Belkin, M. and P. Niyogi (2004). Semi-Supervised Learning on Riemannian Manifolds. Machine Learning 56(1-3), 209-239.
    • (2004) Machine Learning , vol.56 , Issue.1-3 , pp. 209-239
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 49449106707 scopus 로고    scopus 로고
    • Fisher lecture: Dimension reduction in regression
    • Cook, R. (2007). Fisher lecture: Dimension reduction in regression. Statistical Science 22(1), 1-26.
    • (2007) Statistical Science , vol.22 , Issue.1 , pp. 1-26
    • Cook, R.1
  • 4
    • 84881499895 scopus 로고
    • Discussion of "sliced inverse regression for dimension reduction"
    • Cook, R. and S. Weisberg (1991). Discussion of "sliced inverse regression for dimension reduction". J. Amer. Statist. Assoc. 86, 328-332.
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 328-332
    • Cook, R.1    Weisberg, S.2
  • 5
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: New locally linear embedding techniques for high dimensional data
    • Donoho, D. and C. Grimes (2003). Hessian eigenmaps: new locally linear embedding techniques for high dimensional data. Proceedings of the National Academy of Sciences 100, 5591-5596.
    • (2003) Proceedings of the National Academy of Sciences , vol.100 , pp. 5591-5596
    • Donoho, D.1    Grimes, C.2
  • 6
    • 84862301922 scopus 로고    scopus 로고
    • Kernel stick-breaking processes
    • Dunson, D. B. and J. Park (2008). Kernel stick-breaking processes. Biometrika 89, 268-277.
    • (2008) Biometrika , vol.89 , pp. 268-277
    • Dunson, D.B.1    Park, J.2
  • 7
    • 42349087482 scopus 로고    scopus 로고
    • The matrix stick-breaking process: Flexible bayes meta-analysis
    • Dunson, D. B., X. Ya, and C. Lawrence (2008). The matrix stick-breaking process: Flexible bayes meta-analysis. J. Amer. Statist. Assoc., 317-327.
    • (2008) J. Amer. Statist. Assoc. , pp. 317-327
    • Dunson, D.B.1    Ya, X.2    Lawrence, C.3
  • 8
    • 84950937290 scopus 로고
    • Bayesian density estimation and inference using mixtures
    • Escobar,M. andM.West (1995). Bayesian density estimation and inference using mixtures. J. Amer. Statist. Assoc., 577-588.
    • (1995) J. Amer. Statist. Assoc. , pp. 577-588
    • Escobar, M.1    West, M.2
  • 9
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson, T. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist., 209-230.
    • (1973) Ann. Statist. , pp. 209-230
    • Ferguson, T.1
  • 10
    • 0000780135 scopus 로고
    • Prior distributions on spaces of probability measures
    • Ferguson, T. (1974). Prior distributions on spaces of probability measures. Ann. Statist., 615-629.
    • (1974) Ann. Statist. , pp. 615-629
    • Ferguson, T.1
  • 11
    • 0000764772 scopus 로고
    • The use of multiplemeasurements in taxonomic problems
    • Fisher, R. (1936). The use of multiplemeasurements in taxonomic problems. Annual Eugenics 7(II), 179-188.
    • (1936) Annual Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.1
  • 13
    • 24644441776 scopus 로고    scopus 로고
    • Bayesian nonparametric spatial modeling with dirichlet process mixing
    • Gelfand, A., A. Kottas, and S. N. MacEachern (2005). Bayesian nonparametric spatial modeling with dirichlet process mixing. J. Amer. Statist. Assoc. (471), 1021-1035.
    • (2005) J. Amer. Statist. Assoc. , Issue.471 , pp. 1021-1035
    • Gelfand, A.1    Kottas, A.2    MacEachern, S.N.3
  • 16
    • 33645509944 scopus 로고    scopus 로고
    • Order-based dependent dirichlet processes
    • Griffin, J. and M. Steel (2006). Order-based dependent dirichlet processes. J. Amer. Statist. Assoc., 179-194.
    • (2006) J. Amer. Statist. Assoc. , pp. 179-194
    • Griffin, J.1    Steel, M.2
  • 17
    • 85199993440 scopus 로고    scopus 로고
    • Discriminant analysis by Gaussian mixtures
    • Hastie and Tibshirani (1994). Discriminant analysis by Gaussian mixtures. J. Roy.Statist. Soc. Ser. B 58, 155-176.
    • (1994) J. Roy.Statist. Soc. Ser. B , vol.58 , pp. 155-176
    • Hastie1    Tibshirani2
  • 19
    • 85199993440 scopus 로고    scopus 로고
    • Discriminant analysis by Gaussian mixtures
    • Hastie, T. and R. Tibshirani (1996b). Discriminant analysis by Gaussian mixtures. J. Roy.Statist. Soc. Ser. B 58(1), 155-176.
    • (1996) J. Roy.Statist. Soc. Ser. B , vol.58 , Issue.1 , pp. 155-176
    • Hastie, T.1    Tibshirani, R.2
  • 22
    • 84980162923 scopus 로고
    • Riemannian center of mass and mollifier smoothing
    • Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math. (5).
    • (1977) Comm. Pure Appl. Math. , Issue.5
    • Karcher, H.1
  • 23
    • 84960586494 scopus 로고
    • Probability, convexity and harmonic maps with small image. i. uniqueness and fine existence
    • Kendall, W. S. (1990). Probability, convexity and harmonic maps with small image. i. uniqueness and fine existence. Proc. London Math. Soc. (2), 371-406.
    • (1990) Proc. London Math. Soc. , Issue.2 , pp. 371-406
    • Kendall, W.S.1
  • 24
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction
    • Li, K. (1991). Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc. 86, 316-342.
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 316-342
    • Li, K.1
  • 25
    • 84950441056 scopus 로고
    • On principal Hessian directions for data visualization and dimension reduction: Another application of Stein's lemma
    • Li, K. (1992). On principal Hessian directions for data visualization and dimension reduction: another application of Stein's lemma. Ann. Statist. 97, 1025-1039.
    • (1992) Ann. Statist. , vol.97 , pp. 1025-1039
    • Li, K.1
  • 26
    • 1842539381 scopus 로고    scopus 로고
    • Bayesian model assessment in factor analysis
    • Lopes, H. F. and M. West (2004). Bayesian model assessment in factor analysis. statsinica 14, 41-67.
    • (2004) Statsinica , vol.14 , pp. 41-67
    • Lopes, H.F.1    West, M.2
  • 29
    • 33845234476 scopus 로고    scopus 로고
    • Estimation of gradients and coordinate covariation in classification
    • Mukherjee, S. and Q. Wu (2006). Estimation of gradients and coordinate covariation in classification. J. Mach. Learn. Res. 7, 2481-2514.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2481-2514
    • Mukherjee, S.1    Wu, Q.2
  • 30
    • 84862286766 scopus 로고    scopus 로고
    • Learning gradients and feature selection on manifolds
    • in press
    • Mukherjee, S., Q.Wu, and D.-X. Zhou (2010). Learning gradients and feature selection on manifolds. Bernoulli. in press.
    • (2010) Bernoulli
    • Mukherjee, S.1    Wu, Q.2    Zhou, D.-X.3
  • 31
    • 33646374652 scopus 로고    scopus 로고
    • Learning coordinate covariances via gradients
    • Mukherjee, S. and D. Zhou (2006). Learning coordinate covariances via gradients. J. Mach. Learn. Res. 7, 519-549.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 519-549
    • Mukherjee, S.1    Zhou, D.2
  • 32
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S. and L. Saul (2000). Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 34
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
    • Sugiyama, M. (2007). Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J. Mach. Learn. Res. 8, 1027-1061.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 35
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J., V. de Silva, and J. Langford (2000). A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.1    De Silva, V.2    Langford, J.3
  • 36
    • 80052815831 scopus 로고    scopus 로고
    • A bayesian implementation of sufficient dimension reduction in regression
    • Tokdar, S., Y. Zhu, and J. Ghosh (2008). A bayesian implementation of sufficient dimension reduction in regression. Technical report, Purdue Univ.
    • (2008) Technical Report, Purdue Univ
    • Tokdar, S.1    Zhu, Y.2    Ghosh, J.3
  • 38
    • 0036428498 scopus 로고    scopus 로고
    • An adaptive estimation of dimension reduction space
    • Xia, Y., H. Tong, W. Li, and L.-X. Zhu (2002). An adaptive estimation of dimension reduction space. J. Roy.Statist. Soc. Ser. B 64(3), 363-410.
    • (2002) J. Roy.Statist. Soc. Ser. B , vol.64 , Issue.3 , pp. 363-410
    • Xia, Y.1    Tong, H.2    Li, W.3    Zhu, L.-X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.