-
1
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
doi: 10.1162/089976603321780317
-
Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396, 2003. doi: 10.1162/089976603321780317.
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
3
-
-
84880865323
-
WiFi-SLAM using Gaussian process latent variable models
-
Manuela M. Veloso, editor
-
Brian D. Ferris, Dieter Fox, and Neil D. Lawrence. WiFi-SLAM using Gaussian process latent variable models. In Manuela M. Veloso, editor, Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pages 2480-2485, 2007.
-
(2007)
Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007)
, pp. 2480-2485
-
-
Ferris, B.D.1
Fox, D.2
Lawrence, N.D.3
-
7
-
-
0002945580
-
Bayesian methods: General background
-
J. H. Justice, editor. Cambridge University Press
-
Edwin T. Jaynes. Bayesian methods: General background. In J. H. Justice, editor, Maximum Entropy and Bayesian Methods in Applied Statistics, pages 1-25. Cambridge University Press, 1986.
-
(1986)
Maximum Entropy and Bayesian Methods in Applied Statistics
, pp. 1-25
-
-
Jaynes, E.T.1
-
10
-
-
84898980901
-
Gaussian process models for visualisation of high dimensional data
-
Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Cambridge, MA. MIT Press
-
Neil D. Lawrence. Gaussian process models for visualisation of high dimensional data. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Processing Systems, volume 16, pages 329-336, Cambridge, MA, 2004. MIT Press.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 329-336
-
-
Lawrence, N.D.1
-
11
-
-
27844605876
-
Probabilistic non-linear principal component analysis with Gaussian process latent variable models
-
11
-
Neil D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research, 6:1783-1816, 11 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1783-1816
-
-
Lawrence, N.D.1
-
13
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
doi: 10.1126/science.290.5500.2323
-
Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000. doi: 10.1126/science.290.5500.2323.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
14
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
doi: 10.1162/089976698300017467
-
Bernhard Schölkopf, Alexander Smola, and Klaus- Robert Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998. doi: 10.1162/089976698300017467.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
15
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
doi: 10.1126/science.290.5500.2319
-
Joshua B. Tenenbaum, Virginia de Silva, and John C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500): 2319-2323, 2000. doi: 10.1126/science.290.5500.2319.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
16
-
-
10644295905
-
-
Springer-Verlag, New York. ISBN 9780387402727
-
Larry A. Wasserman. All of Statistics. Springer- Verlag, New York, 2003. ISBN 9780387402727.
-
(2003)
All of Statistics
-
-
Wasserman, L.A.1
-
17
-
-
14344251006
-
Learning a kernel matrix for nonlinear dimensionality reduction
-
Kilian Q. Weinberger, Fei Sha, and Lawrence K. Saul. Learning a kernel matrix for nonlinear dimensionality reduction. In Greiner and Schuurmans [2004], pages 839-846.
-
(2004)
Greiner and Schuurmans
, pp. 839-846
-
-
Weinberger, K.Q.1
Sha, F.2
Saul, L.K.3
-
18
-
-
84898939890
-
On a connection between kernel PCA and metric multidimensional scaling
-
Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Cambridge, MA. MIT Press
-
Christopher K. I. Williams. On a connection between kernel PCA and metric multidimensional scaling. In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural Information Processing Systems, volume 13, pages 675-681, Cambridge, MA, 2001. MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 675-681
-
-
Williams, C.K.I.1
|