-
2
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396.
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
3
-
-
9444224602
-
Spectral clustering and kernel pca are learning eigenfunctions
-
Universit́e de Montŕeal
-
Bengio, Y., Vincent, P., Paiement, J., Delalleau, O., Ouimet, M., and Le Roux, N. (2003). Spectral clustering and kernel pca are learning eigenfunctions. Technical report, D́epartement d'informatique et recherche oṕerationnelle, Universit́e de Montŕeal.
-
(2003)
Technical Report, D́epartement D'informatique et Recherche Oṕerationnelle
-
-
Bengio, Y.1
Vincent, P.2
Paiement, J.3
Delalleau, O.4
Ouimet, M.5
Le Roux, N.6
-
5
-
-
84899009769
-
Global versus local methods in nonlinear dimensionality reduction
-
Becker, S. Thrun, S. and Obermayer, K. editors, Cambridge, MA. The MIT Press
-
de Silva, V. and Tenenbaum, J. (2003). Global versus local methods in nonlinear dimensionality reduction. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural Information Processing Systems, volume 15, pages 705-712, Cambridge, MA. The MIT Press.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 705-712
-
-
De Silva, V.1
Tenenbaum, J.2
-
6
-
-
0000457927
-
Adding a point to vector diagrams in multivariate analysis
-
Gower, J. (1968). Adding a point to vector diagrams in multivariate analysis. Biometrika, 55(3):582- 585.
-
(1968)
Biometrika
, vol.55
, Issue.3
, pp. 582-585
-
-
Gower, J.1
-
7
-
-
4344709031
-
Random matrix approximation of spectra of integral operators
-
Koltchinskii, V. and Gińe, E. (2000). Random matrix approximation of spectra of integral operators. Bernoulli, 6(1):113-167.
-
(2000)
Bernoulli
, vol.6
, Issue.1
, pp. 113-167
-
-
Koltchinskii, V.1
Gińe, E.2
-
8
-
-
84899013108
-
On spectral clustering: Analysis and an algorithm
-
Dietterich, T. G. Becker, S. and Ghahramani, Z. editors, Cambridge, MA. MIT Press
-
Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. In Dietterich, T. G., Becker, S., and Ghahramani, Z., editors, Advances in Neural Information Processing Systems 14, Cambridge, MA. MIT Press.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
-
-
Ng, A.Y.1
Jordan, M.I.2
Weiss, Y.3
-
9
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Roweis, S. and Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.1
Saul, L.2
-
10
-
-
2342517502
-
Think globally, fit locally: Unsupervised learning of low dimensional manifolds
-
Saul, L. and Roweis, S. (2002). Think globally, fit locally: unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research, 4:119-155.
-
(2002)
Journal of Machine Learning Research
, vol.4
, pp. 119-155
-
-
Saul, L.1
Roweis, S.2
-
11
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Scḧolkopf, B., Smola, A., and M̈uller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Scḧolkopf, B.1
Smola, A.2
M̈uller, K.-R.3
-
12
-
-
1542313354
-
The stability of kernel principal components analysis and its relation to the process eigenspectrum
-
Becker, S. Thrun, S. and Obermayer, K. editors, The MIT Press
-
Shawe-Taylor, J. and Williams, C. (2003). The stability of kernel principal components analysis and its relation to the process eigenspectrum. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural Information Processing Systems, volume 15. The MIT Press.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
-
-
Shawe-Taylor, J.1
Williams, C.2
-
14
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum, J., de Silva, V., and Langford, J. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.1
De Silva, V.2
Langford, J.3
|