메뉴 건너뛰기




Volumn 35, Issue 2, 2012, Pages 104-110

Seeing the light: Photobehavior in fruit fly larvae

Author keywords

[No Author keywords available]

Indexed keywords

CRYPTOCHROME; RHODOPSIN; RHODOPSIN 3; RHODOPSIN 4; RHODOPSIN 5; RHODOPSIN 6; TRANSIENT RECEPTOR POTENTIAL CHANNEL; UNCLASSIFIED DRUG;

EID: 84856423273     PISSN: 01662236     EISSN: 1878108X     Source Type: Journal    
DOI: 10.1016/j.tins.2011.11.003     Document Type: Review
Times cited : (56)

References (73)
  • 1
    • 77956039071 scopus 로고    scopus 로고
    • Evolution and ecology of retinal photoreception in early vertebrates
    • Collin S.P. Evolution and ecology of retinal photoreception in early vertebrates. Brain Behav. Evol. 2010, 75:174-185.
    • (2010) Brain Behav. Evol. , vol.75 , pp. 174-185
    • Collin, S.P.1
  • 2
    • 0031426324 scopus 로고    scopus 로고
    • Insect visual perception: complex abilities of simple nervous systems
    • Giurfa M., Menzel R. Insect visual perception: complex abilities of simple nervous systems. Curr. Opin. Neurobiol. 1997, 7:505-513.
    • (1997) Curr. Opin. Neurobiol. , vol.7 , pp. 505-513
    • Giurfa, M.1    Menzel, R.2
  • 3
    • 77956047651 scopus 로고    scopus 로고
    • The nocturnal bottleneck and the evolution of mammalian vision
    • Heesy C.P., Hall M.I. The nocturnal bottleneck and the evolution of mammalian vision. Brain Behav. Evol. 2010, 75:195-203.
    • (2010) Brain Behav. Evol. , vol.75 , pp. 195-203
    • Heesy, C.P.1    Hall, M.I.2
  • 4
    • 58149148376 scopus 로고    scopus 로고
    • Drosophila's view on insect vision
    • Borst A. Drosophila's view on insect vision. Curr. Biol. 2009, 19:R36-R47.
    • (2009) Curr. Biol. , vol.19
    • Borst, A.1
  • 5
    • 11144284638 scopus 로고    scopus 로고
    • Historical perspective on the development and evolution of eyes and photoreceptors
    • Gehring W.J. Historical perspective on the development and evolution of eyes and photoreceptors. Int. J. Dev. Biol. 2004, 48:707-717.
    • (2004) Int. J. Dev. Biol. , vol.48 , pp. 707-717
    • Gehring, W.J.1
  • 6
    • 77955000408 scopus 로고    scopus 로고
    • Fly motion vision
    • Borst A., et al. Fly motion vision. Annu. Rev. Neurosci. 2010, 33:49-70.
    • (2010) Annu. Rev. Neurosci. , vol.33 , pp. 49-70
    • Borst, A.1
  • 7
    • 0033280228 scopus 로고    scopus 로고
    • Visual transduction in Drosophila
    • Montell C. Visual transduction in Drosophila. Annu. Rev. Cell Dev. Biol. 1999, 15:231-268.
    • (1999) Annu. Rev. Cell Dev. Biol. , vol.15 , pp. 231-268
    • Montell, C.1
  • 8
    • 0035831042 scopus 로고    scopus 로고
    • A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila
    • Scott K., et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 2001, 104:661-673.
    • (2001) Cell , vol.104 , pp. 661-673
    • Scott, K.1
  • 10
    • 33749837676 scopus 로고    scopus 로고
    • Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae
    • Schroll C., et al. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 2006, 16:1741-1747.
    • (2006) Curr. Biol. , vol.16 , pp. 1741-1747
    • Schroll, C.1
  • 11
    • 33749256682 scopus 로고    scopus 로고
    • Olfactory learning and behaviour are 'insulated' against visual processing in larval Drosophila
    • Yarali A., et al. Olfactory learning and behaviour are 'insulated' against visual processing in larval Drosophila. J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. 2006, 192:1133-1145.
    • (2006) J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. , vol.192 , pp. 1133-1145
    • Yarali, A.1
  • 12
    • 0029394874 scopus 로고
    • Characterization and genetic analysis of Drosophila melanogaster photobehavior during larval development
    • Sawin-McCormack E.P., et al. Characterization and genetic analysis of Drosophila melanogaster photobehavior during larval development. J. Neurogenet. 1995, 10:119-135.
    • (1995) J. Neurogenet. , vol.10 , pp. 119-135
    • Sawin-McCormack, E.P.1
  • 13
    • 12344299739 scopus 로고    scopus 로고
    • Circadian pacemaker neurons transmit and modulate visual information to control a rapid behavioral response
    • Mazzoni E.O., et al. Circadian pacemaker neurons transmit and modulate visual information to control a rapid behavioral response. Neuron 2005, 45:293-300.
    • (2005) Neuron , vol.45 , pp. 293-300
    • Mazzoni, E.O.1
  • 14
    • 0842303206 scopus 로고    scopus 로고
    • Building a projection map for photoreceptor neurons in the Drosophila optic lobes
    • Morante J., Desplan C. Building a projection map for photoreceptor neurons in the Drosophila optic lobes. Semin. Cell Dev. Biol. 2004, 15:137-143.
    • (2004) Semin. Cell Dev. Biol. , vol.15 , pp. 137-143
    • Morante, J.1    Desplan, C.2
  • 15
    • 47949128389 scopus 로고    scopus 로고
    • Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons
    • Sprecher S.G., Desplan C. Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons. Nature 2008, 454:533-537.
    • (2008) Nature , vol.454 , pp. 533-537
    • Sprecher, S.G.1    Desplan, C.2
  • 16
    • 0027323503 scopus 로고
    • The embryonic development of the Drosophila visual system
    • Green P., et al. The embryonic development of the Drosophila visual system. Cell Tissue Res. 1993, 273:583-598.
    • (1993) Cell Tissue Res. , vol.273 , pp. 583-598
    • Green, P.1
  • 17
    • 0036849579 scopus 로고    scopus 로고
    • The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function
    • Helfrich-Forster C., et al. The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function. J. Neurosci. 2002, 22:9255-9266.
    • (2002) J. Neurosci. , vol.22 , pp. 9255-9266
    • Helfrich-Forster, C.1
  • 18
    • 34548424054 scopus 로고    scopus 로고
    • Adult and larval photoreceptors use different mechanisms to specify the same Rhodopsin fates
    • Sprecher S.G., et al. Adult and larval photoreceptors use different mechanisms to specify the same Rhodopsin fates. Genes Dev. 2007, 21:2182-2195.
    • (2007) Genes Dev. , vol.21 , pp. 2182-2195
    • Sprecher, S.G.1
  • 19
    • 0033134937 scopus 로고    scopus 로고
    • Genetic dissection of behavior: modulation of locomotion by light in the Drosophila melanogaster larva requires genetically distinct visual system functions
    • Busto M., et al. Genetic dissection of behavior: modulation of locomotion by light in the Drosophila melanogaster larva requires genetically distinct visual system functions. J. Neurosci. 1999, 19:3337-3344.
    • (1999) J. Neurosci. , vol.19 , pp. 3337-3344
    • Busto, M.1
  • 20
    • 0033862791 scopus 로고    scopus 로고
    • Behavioral characterization and genetic analysis of the Drosophila melanogaster larval response to light as revealed by a novel individual assay
    • Hassan J., et al. Behavioral characterization and genetic analysis of the Drosophila melanogaster larval response to light as revealed by a novel individual assay. Behav. Genet. 2000, 30:59-69.
    • (2000) Behav. Genet. , vol.30 , pp. 59-69
    • Hassan, J.1
  • 21
    • 34247157362 scopus 로고    scopus 로고
    • Kinematic analysis of Drosophila larval locomotion in response to intermittent light pulses
    • Scantlebury N., et al. Kinematic analysis of Drosophila larval locomotion in response to intermittent light pulses. Behav. Genet. 2007, 37:513-524.
    • (2007) Behav. Genet. , vol.37 , pp. 513-524
    • Scantlebury, N.1
  • 22
    • 79955748178 scopus 로고    scopus 로고
    • Distinct visual pathways mediate Drosophila larval light avoidance and circadian clock entrainment
    • Keene A.C., et al. Distinct visual pathways mediate Drosophila larval light avoidance and circadian clock entrainment. J. Neurosci. 2011, 17:6527-6534.
    • (2011) J. Neurosci. , vol.17 , pp. 6527-6534
    • Keene, A.C.1
  • 23
    • 11144322144 scopus 로고    scopus 로고
    • Photic input pathways that mediate the Drosophila larval response to light and circadian rhythmicity are developmentally related but functionally distinct
    • Hassan J., et al. Photic input pathways that mediate the Drosophila larval response to light and circadian rhythmicity are developmentally related but functionally distinct. J. Comp. Neurol. 2005, 481:266-275.
    • (2005) J. Comp. Neurol. , vol.481 , pp. 266-275
    • Hassan, J.1
  • 24
    • 78650306355 scopus 로고    scopus 로고
    • Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall
    • Xiang Y., et al. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 2010, 468:921-926.
    • (2010) Nature , vol.468 , pp. 921-926
    • Xiang, Y.1
  • 25
    • 0242548487 scopus 로고    scopus 로고
    • Painless, a Drosophila gene essential for nociception
    • Tracey W.D., et al. painless, a Drosophila gene essential for nociception. Cell 2003, 113:261-273.
    • (2003) Cell , vol.113 , pp. 261-273
    • Tracey, W.D.1
  • 26
    • 79952525008 scopus 로고    scopus 로고
    • Function of rhodopsin in temperature discrimination in Drosophila
    • Shen W.L., et al. Function of rhodopsin in temperature discrimination in Drosophila. Science 2011, 331:1333-1336.
    • (2011) Science , vol.331 , pp. 1333-1336
    • Shen, W.L.1
  • 27
    • 0036333568 scopus 로고    scopus 로고
    • Tiling of the Drosophila epidermis by multidendritic sensory neurons
    • Grueber W.B., et al. Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 2002, 129:2867-2878.
    • (2002) Development , vol.129 , pp. 2867-2878
    • Grueber, W.B.1
  • 28
    • 34249714789 scopus 로고    scopus 로고
    • A sensory feedback circuit coordinates muscle activity in Drosophila
    • Hughes C.L., Thomas J.B. A sensory feedback circuit coordinates muscle activity in Drosophila. Mol. Cell. Neurosci. 2007, 35:383-396.
    • (2007) Mol. Cell. Neurosci. , vol.35 , pp. 383-396
    • Hughes, C.L.1    Thomas, J.B.2
  • 29
    • 77649180413 scopus 로고    scopus 로고
    • Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae
    • Zhong L., et al. Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae. Curr. Biol. 2010, 20:429-434.
    • (2010) Curr. Biol. , vol.20 , pp. 429-434
    • Zhong, L.1
  • 30
    • 36849017592 scopus 로고    scopus 로고
    • Nociceptive neurons protect Drosophila larvae from parasitoid wasps
    • Hwang R.Y., et al. Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr. Biol. 2007, 17:2105-2116.
    • (2007) Curr. Biol. , vol.17 , pp. 2105-2116
    • Hwang, R.Y.1
  • 31
    • 77952885238 scopus 로고    scopus 로고
    • C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog
    • Liu J., et al. C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog. Nat. Neurosci. 2010, 13:715-722.
    • (2010) Nat. Neurosci. , vol.13 , pp. 715-722
    • Liu, J.1
  • 32
    • 79251472134 scopus 로고    scopus 로고
    • Photoreceptors: unconventional ways of seeing
    • Diaz N.N., Sprecher S.G. Photoreceptors: unconventional ways of seeing. Curr. Biol. 2011, 21:R25-R27.
    • (2011) Curr. Biol. , vol.21
    • Diaz, N.N.1    Sprecher, S.G.2
  • 33
    • 24044444531 scopus 로고    scopus 로고
    • The circadian timekeeping system of Drosophila
    • Hardin P.E. The circadian timekeeping system of Drosophila. Curr. Biol. 2005, 15:R714-R722.
    • (2005) Curr. Biol. , vol.15
    • Hardin, P.E.1
  • 34
    • 0032486432 scopus 로고    scopus 로고
    • Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim
    • Darlington T.K., et al. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 1998, 280:1599-1603.
    • (1998) Science , vol.280 , pp. 1599-1603
    • Darlington, T.K.1
  • 35
    • 0032577450 scopus 로고    scopus 로고
    • CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless
    • Rutila J.E., et al. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 1998, 93:805-814.
    • (1998) Cell , vol.93 , pp. 805-814
    • Rutila, J.E.1
  • 36
    • 0037101628 scopus 로고    scopus 로고
    • Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster
    • Shafer O.T., et al. Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. J. Neurosci. 2002, 22:5946-5954.
    • (2002) J. Neurosci. , vol.22 , pp. 5946-5954
    • Shafer, O.T.1
  • 37
    • 30844466208 scopus 로고    scopus 로고
    • PER-TIM interactions in living Drosophila cells: an interval timer for the circadian clock
    • Meyer P., et al. PER-TIM interactions in living Drosophila cells: an interval timer for the circadian clock. Science 2006, 311:226-229.
    • (2006) Science , vol.311 , pp. 226-229
    • Meyer, P.1
  • 38
    • 36549022180 scopus 로고    scopus 로고
    • Prothoracicotropic hormone regulates developmental timing and body size in Drosophila
    • McBrayer Z., et al. Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. Dev. Cell 2007, 13:857-871.
    • (2007) Dev. Cell , vol.13 , pp. 857-871
    • McBrayer, Z.1
  • 39
    • 0026502712 scopus 로고
    • Ontogeny of a biological clock in Drosophila melanogaster
    • Sehgal A., et al. Ontogeny of a biological clock in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:1423-1427.
    • (1992) Proc. Natl. Acad. Sci. U.S.A. , vol.89 , pp. 1423-1427
    • Sehgal, A.1
  • 40
    • 1842376242 scopus 로고    scopus 로고
    • Development of pigment-dispersing hormone-immunoreactive neurons in the nervous system of Drosophila melanogaster
    • Helfrich-Forster C. Development of pigment-dispersing hormone-immunoreactive neurons in the nervous system of Drosophila melanogaster. J. Comp. Neurol. 1997, 380:335-354.
    • (1997) J. Comp. Neurol. , vol.380 , pp. 335-354
    • Helfrich-Forster, C.1
  • 41
    • 0033599009 scopus 로고    scopus 로고
    • A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila
    • Renn S.C., et al. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 1999, 99:791-802.
    • (1999) Cell , vol.99 , pp. 791-802
    • Renn, S.C.1
  • 42
    • 0142123778 scopus 로고    scopus 로고
    • Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster
    • Helfrich-Forster C., et al. Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. J. Neurosci. 2000, 20:3339-3353.
    • (2000) J. Neurosci. , vol.20 , pp. 3339-3353
    • Helfrich-Forster, C.1
  • 43
    • 4544363312 scopus 로고    scopus 로고
    • The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system
    • Lin Y., et al. The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system. J. Neurosci. 2004, 24:7951-7957.
    • (2004) J. Neurosci. , vol.24 , pp. 7951-7957
    • Lin, Y.1
  • 44
    • 71649101068 scopus 로고    scopus 로고
    • The CRYPTOCHROME photoreceptor gates PDF neuropeptide signaling to set circadian network hierarchy in Drosophila
    • Zhang L., et al. The CRYPTOCHROME photoreceptor gates PDF neuropeptide signaling to set circadian network hierarchy in Drosophila. Curr. Biol. 2009, 19:2050-2055.
    • (2009) Curr. Biol. , vol.19 , pp. 2050-2055
    • Zhang, L.1
  • 45
    • 74949097778 scopus 로고    scopus 로고
    • PDF-modulated visual inputs and cryptochrome define diurnal behavior in Drosophila
    • Cusumano P., et al. PDF-modulated visual inputs and cryptochrome define diurnal behavior in Drosophila. Nat. Neurosci. 2009, 12:1431-1437.
    • (2009) Nat. Neurosci. , vol.12 , pp. 1431-1437
    • Cusumano, P.1
  • 46
    • 70350183790 scopus 로고    scopus 로고
    • Temperature entrainment of Drosophila's circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain
    • Sehadova H., et al. Temperature entrainment of Drosophila's circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain. Neuron 2009, 64:251-266.
    • (2009) Neuron , vol.64 , pp. 251-266
    • Sehadova, H.1
  • 47
    • 67649971341 scopus 로고    scopus 로고
    • A role for blind DN2 clock neurons in temperature entrainment of the Drosophila larval brain
    • Picot M., et al. A role for blind DN2 clock neurons in temperature entrainment of the Drosophila larval brain. J. Neurosci. 2009, 29:8312-8320.
    • (2009) J. Neurosci. , vol.29 , pp. 8312-8320
    • Picot, M.1
  • 48
    • 34247553947 scopus 로고    scopus 로고
    • Integration of light and temperature in the regulation of circadian gene expression in Drosophila
    • Boothroyd C.E., et al. Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet. 2007, 3:e54.
    • (2007) PLoS Genet. , vol.3
    • Boothroyd, C.E.1
  • 49
    • 0032567038 scopus 로고    scopus 로고
    • CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity
    • Emery P., et al. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 1998, 95:669-679.
    • (1998) Cell , vol.95 , pp. 669-679
    • Emery, P.1
  • 50
    • 0032566970 scopus 로고    scopus 로고
    • The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila
    • Stanewsky R., et al. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 1998, 95:681-692.
    • (1998) Cell , vol.95 , pp. 681-692
    • Stanewsky, R.1
  • 51
    • 0034800310 scopus 로고    scopus 로고
    • Photic signaling by cryptochrome in the Drosophila circadian system
    • Lin F.J., et al. Photic signaling by cryptochrome in the Drosophila circadian system. Mol. Cell. Biol. 2001, 21:7287-7294.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 7287-7294
    • Lin, F.J.1
  • 52
    • 79952798593 scopus 로고    scopus 로고
    • CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate
    • Fogle K.J., et al. CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science 2011, 331:1409-1413.
    • (2011) Science , vol.331 , pp. 1409-1413
    • Fogle, K.J.1
  • 53
    • 0442319504 scopus 로고    scopus 로고
    • The doubletime and CKII kinases collaborate to potentiate Drosophila PER transcriptional repressor activity
    • Nawathean P., Rosbash M. The doubletime and CKII kinases collaborate to potentiate Drosophila PER transcriptional repressor activity. Mol. Cell 2004, 13:213-223.
    • (2004) Mol. Cell , vol.13 , pp. 213-223
    • Nawathean, P.1    Rosbash, M.2
  • 54
    • 17044451254 scopus 로고    scopus 로고
    • A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless
    • Allada R., et al. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 1998, 93:791-804.
    • (1998) Cell , vol.93 , pp. 791-804
    • Allada, R.1
  • 55
    • 63349110414 scopus 로고    scopus 로고
    • Behavioral dissection of Drosophila larval phototaxis
    • Gong Z. Behavioral dissection of Drosophila larval phototaxis. Biochem. Biophys. Res. Commun. 2009, 382:395-399.
    • (2009) Biochem. Biophys. Res. Commun. , vol.382 , pp. 395-399
    • Gong, Z.1
  • 56
    • 0030861891 scopus 로고    scopus 로고
    • Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling
    • Kaneko M., et al. Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling. J. Neurosci. 1997, 17:6745-6760.
    • (1997) J. Neurosci. , vol.17 , pp. 6745-6760
    • Kaneko, M.1
  • 57
    • 80052613388 scopus 로고    scopus 로고
    • The Drosophila larval visual system: high-resolution analysis of a simple visual neuropil
    • Sprecher S.G., et al. The Drosophila larval visual system: high-resolution analysis of a simple visual neuropil. Dev. Biol. 2011, 358:33-43.
    • (2011) Dev. Biol. , vol.358 , pp. 33-43
    • Sprecher, S.G.1
  • 58
    • 33744532825 scopus 로고    scopus 로고
    • A sleep-promoting role for the Drosophila serotonin receptor 1A
    • Yuan Q., et al. A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr. Biol. 2006, 16:1051-1062.
    • (2006) Curr. Biol. , vol.16 , pp. 1051-1062
    • Yuan, Q.1
  • 59
    • 21544433803 scopus 로고    scopus 로고
    • Serotonin modulates circadian entrainment in Drosophila
    • Yuan Q., et al. Serotonin modulates circadian entrainment in Drosophila. Neuron 2005, 47:115-127.
    • (2005) Neuron , vol.47 , pp. 115-127
    • Yuan, Q.1
  • 60
    • 34247574267 scopus 로고    scopus 로고
    • Serotonin and neuropeptide F have opposite modulatory effects on fly aggression
    • Dierick H.A., Greenspan R.J. Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat. Genet. 2007, 39:678-682.
    • (2007) Nat. Genet. , vol.39 , pp. 678-682
    • Dierick, H.A.1    Greenspan, R.J.2
  • 61
    • 0029004555 scopus 로고
    • The larval optic nerve is required for the development of an identified serotonergic arborization in Drosophila melanogaster
    • Mukhopadhyay M., Campos A.R. The larval optic nerve is required for the development of an identified serotonergic arborization in Drosophila melanogaster. Dev. Biol. 1995, 169:629-643.
    • (1995) Dev. Biol. , vol.169 , pp. 629-643
    • Mukhopadhyay, M.1    Campos, A.R.2
  • 62
    • 67650770083 scopus 로고    scopus 로고
    • Role of serotonergic neurons in the Drosophila larval response to light
    • Rodriguez Moncalvo V.G., Campos A.R. Role of serotonergic neurons in the Drosophila larval response to light. BMC Neurosci. 2009, 10:66.
    • (2009) BMC Neurosci. , vol.10 , pp. 66
    • Rodriguez Moncalvo, V.G.1    Campos, A.R.2
  • 63
    • 26644466297 scopus 로고    scopus 로고
    • Genetic dissection of trophic interactions in the larval optic neuropil of Drosophila melanogaster
    • Rodriguez Moncalvo V.G., Campos A.R. Genetic dissection of trophic interactions in the larval optic neuropil of Drosophila melanogaster. Dev. Biol. 2005, 286:549-558.
    • (2005) Dev. Biol. , vol.286 , pp. 549-558
    • Rodriguez Moncalvo, V.G.1    Campos, A.R.2
  • 64
    • 77958171355 scopus 로고    scopus 로고
    • Two pairs of neurons in the central brain control Drosophila innate light preference
    • Gong Z., et al. Two pairs of neurons in the central brain control Drosophila innate light preference. Science 2010, 330:499-502.
    • (2010) Science , vol.330 , pp. 499-502
    • Gong, Z.1
  • 65
    • 0030798631 scopus 로고    scopus 로고
    • Glia in the chiasms and medulla of the Drosophila melanogaster optic lobes
    • Tix S., et al. Glia in the chiasms and medulla of the Drosophila melanogaster optic lobes. Cell Tissue Res. 1997, 289:397-409.
    • (1997) Cell Tissue Res. , vol.289 , pp. 397-409
    • Tix, S.1
  • 66
    • 42149090460 scopus 로고    scopus 로고
    • Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS
    • Daniels R.W., et al. Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS. J. Comp. Neurol. 2008, 508:131-152.
    • (2008) J. Comp. Neurol. , vol.508 , pp. 131-152
    • Daniels, R.W.1
  • 67
    • 13844250536 scopus 로고    scopus 로고
    • The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis
    • Rosenzweig M., et al. The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev. 2005, 19:419-424.
    • (2005) Genes Dev. , vol.19 , pp. 419-424
    • Rosenzweig, M.1
  • 68
    • 27744546414 scopus 로고    scopus 로고
    • Regulation of aversion to noxious food by Drosophila neuropeptide Y- and insulin-like systems
    • Wu Q., et al. Regulation of aversion to noxious food by Drosophila neuropeptide Y- and insulin-like systems. Nat. Neurosci. 2005, 8:1350-1355.
    • (2005) Nat. Neurosci. , vol.8 , pp. 1350-1355
    • Wu, Q.1
  • 69
    • 83055179986 scopus 로고    scopus 로고
    • Capacity of visual classical conditioning in Drosophila larvae
    • von Essen A., et al. Capacity of visual classical conditioning in Drosophila larvae. Behav. Neurosci. 2011, 125:921-929.
    • (2011) Behav. Neurosci. , vol.125 , pp. 921-929
    • von Essen, A.1
  • 70
    • 38649117623 scopus 로고    scopus 로고
    • Bilateral olfactory sensory input enhances chemotaxis behavior
    • Louis M., et al. Bilateral olfactory sensory input enhances chemotaxis behavior. Nat. Neurosci. 2008, 11:187-199.
    • (2008) Nat. Neurosci. , vol.11 , pp. 187-199
    • Louis, M.1
  • 71
    • 77949781482 scopus 로고    scopus 로고
    • Navigational decision making in Drosophila thermotaxis
    • Luo L., et al. Navigational decision making in Drosophila thermotaxis. J. Neurosci. 2010, 30:4261-4272.
    • (2010) J. Neurosci. , vol.30 , pp. 4261-4272
    • Luo, L.1
  • 72
    • 84882386257 scopus 로고    scopus 로고
    • Development of the Drosophila eye, from precursor specification to terminal differentiation
    • Elsevier, P.A. Tsonis, J. Wittbrodt (Eds.)
    • Sprecher S.G., Desplan C. Development of the Drosophila eye, from precursor specification to terminal differentiation. Animal Models for Eye Research 2009, 27-47. Elsevier. P.A. Tsonis, J. Wittbrodt (Eds.).
    • (2009) Animal Models for Eye Research , pp. 27-47
    • Sprecher, S.G.1    Desplan, C.2
  • 73
    • 33750331976 scopus 로고    scopus 로고
    • Continuity versus split and reconstitution: exploring the molecular developmental corollaries of insect eye primordium evolution
    • Friedrich M. Continuity versus split and reconstitution: exploring the molecular developmental corollaries of insect eye primordium evolution. Dev. Biol. 2006, 299:310-329.
    • (2006) Dev. Biol. , vol.299 , pp. 310-329
    • Friedrich, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.