-
1
-
-
77956039071
-
Evolution and ecology of retinal photoreception in early vertebrates
-
Collin S.P. Evolution and ecology of retinal photoreception in early vertebrates. Brain Behav. Evol. 2010, 75:174-185.
-
(2010)
Brain Behav. Evol.
, vol.75
, pp. 174-185
-
-
Collin, S.P.1
-
2
-
-
0031426324
-
Insect visual perception: complex abilities of simple nervous systems
-
Giurfa M., Menzel R. Insect visual perception: complex abilities of simple nervous systems. Curr. Opin. Neurobiol. 1997, 7:505-513.
-
(1997)
Curr. Opin. Neurobiol.
, vol.7
, pp. 505-513
-
-
Giurfa, M.1
Menzel, R.2
-
3
-
-
77956047651
-
The nocturnal bottleneck and the evolution of mammalian vision
-
Heesy C.P., Hall M.I. The nocturnal bottleneck and the evolution of mammalian vision. Brain Behav. Evol. 2010, 75:195-203.
-
(2010)
Brain Behav. Evol.
, vol.75
, pp. 195-203
-
-
Heesy, C.P.1
Hall, M.I.2
-
4
-
-
58149148376
-
Drosophila's view on insect vision
-
Borst A. Drosophila's view on insect vision. Curr. Biol. 2009, 19:R36-R47.
-
(2009)
Curr. Biol.
, vol.19
-
-
Borst, A.1
-
5
-
-
11144284638
-
Historical perspective on the development and evolution of eyes and photoreceptors
-
Gehring W.J. Historical perspective on the development and evolution of eyes and photoreceptors. Int. J. Dev. Biol. 2004, 48:707-717.
-
(2004)
Int. J. Dev. Biol.
, vol.48
, pp. 707-717
-
-
Gehring, W.J.1
-
6
-
-
77955000408
-
Fly motion vision
-
Borst A., et al. Fly motion vision. Annu. Rev. Neurosci. 2010, 33:49-70.
-
(2010)
Annu. Rev. Neurosci.
, vol.33
, pp. 49-70
-
-
Borst, A.1
-
7
-
-
0033280228
-
Visual transduction in Drosophila
-
Montell C. Visual transduction in Drosophila. Annu. Rev. Cell Dev. Biol. 1999, 15:231-268.
-
(1999)
Annu. Rev. Cell Dev. Biol.
, vol.15
, pp. 231-268
-
-
Montell, C.1
-
8
-
-
0035831042
-
A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila
-
Scott K., et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 2001, 104:661-673.
-
(2001)
Cell
, vol.104
, pp. 661-673
-
-
Scott, K.1
-
10
-
-
33749837676
-
Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae
-
Schroll C., et al. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 2006, 16:1741-1747.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1741-1747
-
-
Schroll, C.1
-
11
-
-
33749256682
-
Olfactory learning and behaviour are 'insulated' against visual processing in larval Drosophila
-
Yarali A., et al. Olfactory learning and behaviour are 'insulated' against visual processing in larval Drosophila. J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. 2006, 192:1133-1145.
-
(2006)
J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol.
, vol.192
, pp. 1133-1145
-
-
Yarali, A.1
-
12
-
-
0029394874
-
Characterization and genetic analysis of Drosophila melanogaster photobehavior during larval development
-
Sawin-McCormack E.P., et al. Characterization and genetic analysis of Drosophila melanogaster photobehavior during larval development. J. Neurogenet. 1995, 10:119-135.
-
(1995)
J. Neurogenet.
, vol.10
, pp. 119-135
-
-
Sawin-McCormack, E.P.1
-
13
-
-
12344299739
-
Circadian pacemaker neurons transmit and modulate visual information to control a rapid behavioral response
-
Mazzoni E.O., et al. Circadian pacemaker neurons transmit and modulate visual information to control a rapid behavioral response. Neuron 2005, 45:293-300.
-
(2005)
Neuron
, vol.45
, pp. 293-300
-
-
Mazzoni, E.O.1
-
14
-
-
0842303206
-
Building a projection map for photoreceptor neurons in the Drosophila optic lobes
-
Morante J., Desplan C. Building a projection map for photoreceptor neurons in the Drosophila optic lobes. Semin. Cell Dev. Biol. 2004, 15:137-143.
-
(2004)
Semin. Cell Dev. Biol.
, vol.15
, pp. 137-143
-
-
Morante, J.1
Desplan, C.2
-
15
-
-
47949128389
-
Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons
-
Sprecher S.G., Desplan C. Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons. Nature 2008, 454:533-537.
-
(2008)
Nature
, vol.454
, pp. 533-537
-
-
Sprecher, S.G.1
Desplan, C.2
-
16
-
-
0027323503
-
The embryonic development of the Drosophila visual system
-
Green P., et al. The embryonic development of the Drosophila visual system. Cell Tissue Res. 1993, 273:583-598.
-
(1993)
Cell Tissue Res.
, vol.273
, pp. 583-598
-
-
Green, P.1
-
17
-
-
0036849579
-
The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function
-
Helfrich-Forster C., et al. The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function. J. Neurosci. 2002, 22:9255-9266.
-
(2002)
J. Neurosci.
, vol.22
, pp. 9255-9266
-
-
Helfrich-Forster, C.1
-
18
-
-
34548424054
-
Adult and larval photoreceptors use different mechanisms to specify the same Rhodopsin fates
-
Sprecher S.G., et al. Adult and larval photoreceptors use different mechanisms to specify the same Rhodopsin fates. Genes Dev. 2007, 21:2182-2195.
-
(2007)
Genes Dev.
, vol.21
, pp. 2182-2195
-
-
Sprecher, S.G.1
-
19
-
-
0033134937
-
Genetic dissection of behavior: modulation of locomotion by light in the Drosophila melanogaster larva requires genetically distinct visual system functions
-
Busto M., et al. Genetic dissection of behavior: modulation of locomotion by light in the Drosophila melanogaster larva requires genetically distinct visual system functions. J. Neurosci. 1999, 19:3337-3344.
-
(1999)
J. Neurosci.
, vol.19
, pp. 3337-3344
-
-
Busto, M.1
-
20
-
-
0033862791
-
Behavioral characterization and genetic analysis of the Drosophila melanogaster larval response to light as revealed by a novel individual assay
-
Hassan J., et al. Behavioral characterization and genetic analysis of the Drosophila melanogaster larval response to light as revealed by a novel individual assay. Behav. Genet. 2000, 30:59-69.
-
(2000)
Behav. Genet.
, vol.30
, pp. 59-69
-
-
Hassan, J.1
-
21
-
-
34247157362
-
Kinematic analysis of Drosophila larval locomotion in response to intermittent light pulses
-
Scantlebury N., et al. Kinematic analysis of Drosophila larval locomotion in response to intermittent light pulses. Behav. Genet. 2007, 37:513-524.
-
(2007)
Behav. Genet.
, vol.37
, pp. 513-524
-
-
Scantlebury, N.1
-
22
-
-
79955748178
-
Distinct visual pathways mediate Drosophila larval light avoidance and circadian clock entrainment
-
Keene A.C., et al. Distinct visual pathways mediate Drosophila larval light avoidance and circadian clock entrainment. J. Neurosci. 2011, 17:6527-6534.
-
(2011)
J. Neurosci.
, vol.17
, pp. 6527-6534
-
-
Keene, A.C.1
-
23
-
-
11144322144
-
Photic input pathways that mediate the Drosophila larval response to light and circadian rhythmicity are developmentally related but functionally distinct
-
Hassan J., et al. Photic input pathways that mediate the Drosophila larval response to light and circadian rhythmicity are developmentally related but functionally distinct. J. Comp. Neurol. 2005, 481:266-275.
-
(2005)
J. Comp. Neurol.
, vol.481
, pp. 266-275
-
-
Hassan, J.1
-
24
-
-
78650306355
-
Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall
-
Xiang Y., et al. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 2010, 468:921-926.
-
(2010)
Nature
, vol.468
, pp. 921-926
-
-
Xiang, Y.1
-
25
-
-
0242548487
-
Painless, a Drosophila gene essential for nociception
-
Tracey W.D., et al. painless, a Drosophila gene essential for nociception. Cell 2003, 113:261-273.
-
(2003)
Cell
, vol.113
, pp. 261-273
-
-
Tracey, W.D.1
-
26
-
-
79952525008
-
Function of rhodopsin in temperature discrimination in Drosophila
-
Shen W.L., et al. Function of rhodopsin in temperature discrimination in Drosophila. Science 2011, 331:1333-1336.
-
(2011)
Science
, vol.331
, pp. 1333-1336
-
-
Shen, W.L.1
-
27
-
-
0036333568
-
Tiling of the Drosophila epidermis by multidendritic sensory neurons
-
Grueber W.B., et al. Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 2002, 129:2867-2878.
-
(2002)
Development
, vol.129
, pp. 2867-2878
-
-
Grueber, W.B.1
-
28
-
-
34249714789
-
A sensory feedback circuit coordinates muscle activity in Drosophila
-
Hughes C.L., Thomas J.B. A sensory feedback circuit coordinates muscle activity in Drosophila. Mol. Cell. Neurosci. 2007, 35:383-396.
-
(2007)
Mol. Cell. Neurosci.
, vol.35
, pp. 383-396
-
-
Hughes, C.L.1
Thomas, J.B.2
-
29
-
-
77649180413
-
Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae
-
Zhong L., et al. Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae. Curr. Biol. 2010, 20:429-434.
-
(2010)
Curr. Biol.
, vol.20
, pp. 429-434
-
-
Zhong, L.1
-
30
-
-
36849017592
-
Nociceptive neurons protect Drosophila larvae from parasitoid wasps
-
Hwang R.Y., et al. Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr. Biol. 2007, 17:2105-2116.
-
(2007)
Curr. Biol.
, vol.17
, pp. 2105-2116
-
-
Hwang, R.Y.1
-
31
-
-
77952885238
-
C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog
-
Liu J., et al. C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog. Nat. Neurosci. 2010, 13:715-722.
-
(2010)
Nat. Neurosci.
, vol.13
, pp. 715-722
-
-
Liu, J.1
-
32
-
-
79251472134
-
Photoreceptors: unconventional ways of seeing
-
Diaz N.N., Sprecher S.G. Photoreceptors: unconventional ways of seeing. Curr. Biol. 2011, 21:R25-R27.
-
(2011)
Curr. Biol.
, vol.21
-
-
Diaz, N.N.1
Sprecher, S.G.2
-
33
-
-
24044444531
-
The circadian timekeeping system of Drosophila
-
Hardin P.E. The circadian timekeeping system of Drosophila. Curr. Biol. 2005, 15:R714-R722.
-
(2005)
Curr. Biol.
, vol.15
-
-
Hardin, P.E.1
-
34
-
-
0032486432
-
Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim
-
Darlington T.K., et al. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 1998, 280:1599-1603.
-
(1998)
Science
, vol.280
, pp. 1599-1603
-
-
Darlington, T.K.1
-
35
-
-
0032577450
-
CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless
-
Rutila J.E., et al. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 1998, 93:805-814.
-
(1998)
Cell
, vol.93
, pp. 805-814
-
-
Rutila, J.E.1
-
36
-
-
0037101628
-
Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster
-
Shafer O.T., et al. Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. J. Neurosci. 2002, 22:5946-5954.
-
(2002)
J. Neurosci.
, vol.22
, pp. 5946-5954
-
-
Shafer, O.T.1
-
37
-
-
30844466208
-
PER-TIM interactions in living Drosophila cells: an interval timer for the circadian clock
-
Meyer P., et al. PER-TIM interactions in living Drosophila cells: an interval timer for the circadian clock. Science 2006, 311:226-229.
-
(2006)
Science
, vol.311
, pp. 226-229
-
-
Meyer, P.1
-
38
-
-
36549022180
-
Prothoracicotropic hormone regulates developmental timing and body size in Drosophila
-
McBrayer Z., et al. Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. Dev. Cell 2007, 13:857-871.
-
(2007)
Dev. Cell
, vol.13
, pp. 857-871
-
-
McBrayer, Z.1
-
39
-
-
0026502712
-
Ontogeny of a biological clock in Drosophila melanogaster
-
Sehgal A., et al. Ontogeny of a biological clock in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:1423-1427.
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 1423-1427
-
-
Sehgal, A.1
-
40
-
-
1842376242
-
Development of pigment-dispersing hormone-immunoreactive neurons in the nervous system of Drosophila melanogaster
-
Helfrich-Forster C. Development of pigment-dispersing hormone-immunoreactive neurons in the nervous system of Drosophila melanogaster. J. Comp. Neurol. 1997, 380:335-354.
-
(1997)
J. Comp. Neurol.
, vol.380
, pp. 335-354
-
-
Helfrich-Forster, C.1
-
41
-
-
0033599009
-
A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila
-
Renn S.C., et al. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 1999, 99:791-802.
-
(1999)
Cell
, vol.99
, pp. 791-802
-
-
Renn, S.C.1
-
42
-
-
0142123778
-
Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster
-
Helfrich-Forster C., et al. Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. J. Neurosci. 2000, 20:3339-3353.
-
(2000)
J. Neurosci.
, vol.20
, pp. 3339-3353
-
-
Helfrich-Forster, C.1
-
43
-
-
4544363312
-
The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system
-
Lin Y., et al. The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system. J. Neurosci. 2004, 24:7951-7957.
-
(2004)
J. Neurosci.
, vol.24
, pp. 7951-7957
-
-
Lin, Y.1
-
44
-
-
71649101068
-
The CRYPTOCHROME photoreceptor gates PDF neuropeptide signaling to set circadian network hierarchy in Drosophila
-
Zhang L., et al. The CRYPTOCHROME photoreceptor gates PDF neuropeptide signaling to set circadian network hierarchy in Drosophila. Curr. Biol. 2009, 19:2050-2055.
-
(2009)
Curr. Biol.
, vol.19
, pp. 2050-2055
-
-
Zhang, L.1
-
45
-
-
74949097778
-
PDF-modulated visual inputs and cryptochrome define diurnal behavior in Drosophila
-
Cusumano P., et al. PDF-modulated visual inputs and cryptochrome define diurnal behavior in Drosophila. Nat. Neurosci. 2009, 12:1431-1437.
-
(2009)
Nat. Neurosci.
, vol.12
, pp. 1431-1437
-
-
Cusumano, P.1
-
46
-
-
70350183790
-
Temperature entrainment of Drosophila's circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain
-
Sehadova H., et al. Temperature entrainment of Drosophila's circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain. Neuron 2009, 64:251-266.
-
(2009)
Neuron
, vol.64
, pp. 251-266
-
-
Sehadova, H.1
-
47
-
-
67649971341
-
A role for blind DN2 clock neurons in temperature entrainment of the Drosophila larval brain
-
Picot M., et al. A role for blind DN2 clock neurons in temperature entrainment of the Drosophila larval brain. J. Neurosci. 2009, 29:8312-8320.
-
(2009)
J. Neurosci.
, vol.29
, pp. 8312-8320
-
-
Picot, M.1
-
48
-
-
34247553947
-
Integration of light and temperature in the regulation of circadian gene expression in Drosophila
-
Boothroyd C.E., et al. Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet. 2007, 3:e54.
-
(2007)
PLoS Genet.
, vol.3
-
-
Boothroyd, C.E.1
-
49
-
-
0032567038
-
CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity
-
Emery P., et al. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 1998, 95:669-679.
-
(1998)
Cell
, vol.95
, pp. 669-679
-
-
Emery, P.1
-
50
-
-
0032566970
-
The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila
-
Stanewsky R., et al. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 1998, 95:681-692.
-
(1998)
Cell
, vol.95
, pp. 681-692
-
-
Stanewsky, R.1
-
51
-
-
0034800310
-
Photic signaling by cryptochrome in the Drosophila circadian system
-
Lin F.J., et al. Photic signaling by cryptochrome in the Drosophila circadian system. Mol. Cell. Biol. 2001, 21:7287-7294.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 7287-7294
-
-
Lin, F.J.1
-
52
-
-
79952798593
-
CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate
-
Fogle K.J., et al. CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science 2011, 331:1409-1413.
-
(2011)
Science
, vol.331
, pp. 1409-1413
-
-
Fogle, K.J.1
-
53
-
-
0442319504
-
The doubletime and CKII kinases collaborate to potentiate Drosophila PER transcriptional repressor activity
-
Nawathean P., Rosbash M. The doubletime and CKII kinases collaborate to potentiate Drosophila PER transcriptional repressor activity. Mol. Cell 2004, 13:213-223.
-
(2004)
Mol. Cell
, vol.13
, pp. 213-223
-
-
Nawathean, P.1
Rosbash, M.2
-
54
-
-
17044451254
-
A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless
-
Allada R., et al. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 1998, 93:791-804.
-
(1998)
Cell
, vol.93
, pp. 791-804
-
-
Allada, R.1
-
55
-
-
63349110414
-
Behavioral dissection of Drosophila larval phototaxis
-
Gong Z. Behavioral dissection of Drosophila larval phototaxis. Biochem. Biophys. Res. Commun. 2009, 382:395-399.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.382
, pp. 395-399
-
-
Gong, Z.1
-
56
-
-
0030861891
-
Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling
-
Kaneko M., et al. Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling. J. Neurosci. 1997, 17:6745-6760.
-
(1997)
J. Neurosci.
, vol.17
, pp. 6745-6760
-
-
Kaneko, M.1
-
57
-
-
80052613388
-
The Drosophila larval visual system: high-resolution analysis of a simple visual neuropil
-
Sprecher S.G., et al. The Drosophila larval visual system: high-resolution analysis of a simple visual neuropil. Dev. Biol. 2011, 358:33-43.
-
(2011)
Dev. Biol.
, vol.358
, pp. 33-43
-
-
Sprecher, S.G.1
-
58
-
-
33744532825
-
A sleep-promoting role for the Drosophila serotonin receptor 1A
-
Yuan Q., et al. A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr. Biol. 2006, 16:1051-1062.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1051-1062
-
-
Yuan, Q.1
-
59
-
-
21544433803
-
Serotonin modulates circadian entrainment in Drosophila
-
Yuan Q., et al. Serotonin modulates circadian entrainment in Drosophila. Neuron 2005, 47:115-127.
-
(2005)
Neuron
, vol.47
, pp. 115-127
-
-
Yuan, Q.1
-
60
-
-
34247574267
-
Serotonin and neuropeptide F have opposite modulatory effects on fly aggression
-
Dierick H.A., Greenspan R.J. Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat. Genet. 2007, 39:678-682.
-
(2007)
Nat. Genet.
, vol.39
, pp. 678-682
-
-
Dierick, H.A.1
Greenspan, R.J.2
-
61
-
-
0029004555
-
The larval optic nerve is required for the development of an identified serotonergic arborization in Drosophila melanogaster
-
Mukhopadhyay M., Campos A.R. The larval optic nerve is required for the development of an identified serotonergic arborization in Drosophila melanogaster. Dev. Biol. 1995, 169:629-643.
-
(1995)
Dev. Biol.
, vol.169
, pp. 629-643
-
-
Mukhopadhyay, M.1
Campos, A.R.2
-
62
-
-
67650770083
-
Role of serotonergic neurons in the Drosophila larval response to light
-
Rodriguez Moncalvo V.G., Campos A.R. Role of serotonergic neurons in the Drosophila larval response to light. BMC Neurosci. 2009, 10:66.
-
(2009)
BMC Neurosci.
, vol.10
, pp. 66
-
-
Rodriguez Moncalvo, V.G.1
Campos, A.R.2
-
63
-
-
26644466297
-
Genetic dissection of trophic interactions in the larval optic neuropil of Drosophila melanogaster
-
Rodriguez Moncalvo V.G., Campos A.R. Genetic dissection of trophic interactions in the larval optic neuropil of Drosophila melanogaster. Dev. Biol. 2005, 286:549-558.
-
(2005)
Dev. Biol.
, vol.286
, pp. 549-558
-
-
Rodriguez Moncalvo, V.G.1
Campos, A.R.2
-
64
-
-
77958171355
-
Two pairs of neurons in the central brain control Drosophila innate light preference
-
Gong Z., et al. Two pairs of neurons in the central brain control Drosophila innate light preference. Science 2010, 330:499-502.
-
(2010)
Science
, vol.330
, pp. 499-502
-
-
Gong, Z.1
-
65
-
-
0030798631
-
Glia in the chiasms and medulla of the Drosophila melanogaster optic lobes
-
Tix S., et al. Glia in the chiasms and medulla of the Drosophila melanogaster optic lobes. Cell Tissue Res. 1997, 289:397-409.
-
(1997)
Cell Tissue Res.
, vol.289
, pp. 397-409
-
-
Tix, S.1
-
66
-
-
42149090460
-
Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS
-
Daniels R.W., et al. Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS. J. Comp. Neurol. 2008, 508:131-152.
-
(2008)
J. Comp. Neurol.
, vol.508
, pp. 131-152
-
-
Daniels, R.W.1
-
67
-
-
13844250536
-
The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis
-
Rosenzweig M., et al. The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev. 2005, 19:419-424.
-
(2005)
Genes Dev.
, vol.19
, pp. 419-424
-
-
Rosenzweig, M.1
-
68
-
-
27744546414
-
Regulation of aversion to noxious food by Drosophila neuropeptide Y- and insulin-like systems
-
Wu Q., et al. Regulation of aversion to noxious food by Drosophila neuropeptide Y- and insulin-like systems. Nat. Neurosci. 2005, 8:1350-1355.
-
(2005)
Nat. Neurosci.
, vol.8
, pp. 1350-1355
-
-
Wu, Q.1
-
69
-
-
83055179986
-
Capacity of visual classical conditioning in Drosophila larvae
-
von Essen A., et al. Capacity of visual classical conditioning in Drosophila larvae. Behav. Neurosci. 2011, 125:921-929.
-
(2011)
Behav. Neurosci.
, vol.125
, pp. 921-929
-
-
von Essen, A.1
-
70
-
-
38649117623
-
Bilateral olfactory sensory input enhances chemotaxis behavior
-
Louis M., et al. Bilateral olfactory sensory input enhances chemotaxis behavior. Nat. Neurosci. 2008, 11:187-199.
-
(2008)
Nat. Neurosci.
, vol.11
, pp. 187-199
-
-
Louis, M.1
-
71
-
-
77949781482
-
Navigational decision making in Drosophila thermotaxis
-
Luo L., et al. Navigational decision making in Drosophila thermotaxis. J. Neurosci. 2010, 30:4261-4272.
-
(2010)
J. Neurosci.
, vol.30
, pp. 4261-4272
-
-
Luo, L.1
-
72
-
-
84882386257
-
Development of the Drosophila eye, from precursor specification to terminal differentiation
-
Elsevier, P.A. Tsonis, J. Wittbrodt (Eds.)
-
Sprecher S.G., Desplan C. Development of the Drosophila eye, from precursor specification to terminal differentiation. Animal Models for Eye Research 2009, 27-47. Elsevier. P.A. Tsonis, J. Wittbrodt (Eds.).
-
(2009)
Animal Models for Eye Research
, pp. 27-47
-
-
Sprecher, S.G.1
Desplan, C.2
-
73
-
-
33750331976
-
Continuity versus split and reconstitution: exploring the molecular developmental corollaries of insect eye primordium evolution
-
Friedrich M. Continuity versus split and reconstitution: exploring the molecular developmental corollaries of insect eye primordium evolution. Dev. Biol. 2006, 299:310-329.
-
(2006)
Dev. Biol.
, vol.299
, pp. 310-329
-
-
Friedrich, M.1
|