메뉴 건너뛰기




Volumn 20, Issue 12, 2011, Pages 3110-3119

Reservoir inflow modeling with artificial neural networks: The case of Kemer Dam in Turkey

Author keywords

Feed forward neural networks; Generalized regression neural networks; Kemer Dam; Reservoir inflow modeling

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; DAM; INFLOW; NUMERICAL MODEL; PRECIPITATION (CLIMATOLOGY); RESERVOIR; WATER RESOURCE;

EID: 84856290123     PISSN: 10184619     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (9)

References (55)
  • 2
    • 0036641896 scopus 로고    scopus 로고
    • Mathematical modeling of watershed hydrology
    • DOI 10.1061/(ASCE)1084-0699(2002)7:4(270)
    • Singh, V.P. and Woolhiser D.A. (2002) Mathematical modeling of watershed hydrology. Journal of Hydrologie Engineering, V. 7, 270-292. (Pubitemid 34793868)
    • (2002) Journal of Hydrologic Engineering , vol.7 , Issue.4 , pp. 270-292
    • Singh, V.P.1    Woolhiser, D.A.2
  • 4
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • DOI 10.1029/95WR01955
    • Hsu, K.L.; Gupta, H.V. and Sorooshian, S. (1995) Artificial neural network modeling of rainfall-runoff process. Water Resources Research, V. 31 (10), 2517-2530. (Pubitemid 26475080)
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Kuo-Lin, H.1    Gupta, H.V.2    Sorooshian, S.3
  • 5
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A.W. and Hall, M.J. (1996) Artificial neural networks as rainfall-runoff models, Hydrological Science Journal, V. 41 (3), 399-417.
    • (1996) Hydrological Science Journal , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 6
    • 0032123339 scopus 로고    scopus 로고
    • Runoff forecasting using RBF networks with OLS algorithm
    • DOI 10.1061/(ASCE)1084-0699(1998)3:3(203)
    • Fernando, D.A.K. and Jayawardena, A.W. (1998) Runoff forecasting using RBF networks with OLS algorithm. Journal of Hydrologie Engineering, V. 3 (3), 203-209. (Pubitemid 28444012)
    • (1998) Journal of Hydrologic Engineering , vol.3 , Issue.3 , pp. 203-209
    • Fernando, D.A.K.1    Jayawardena, A.W.2
  • 7
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • Dawson, C.W. and Wilby, R. (1998) An artificial neural network approach to rainfall-runoff modelling, Hydrological Science Journal, V. 43, 47-66.
    • (1998) Hydrological Science Journal , vol.43 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 8
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo, M.; Andreussi, P. and Soldati, A. (1999) River flood forecasting with a neural network model, Water Resources Research, V. 35, 1191-1197.
    • (1999) Water Resources Research , vol.35 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 9
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using Artificial Neural Networks
    • DOI 10.1061/(ASCE)1084-0699(1999)4:3(232)
    • Tokar, A.S. and Johnson, P.A. (1999) Rainfall-runoff modelling using artificial neural networks. Journal of Hydrologic Engineering, V. 4 (3), 232-239. (Pubitemid 29437829)
    • (1999) Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 10
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • DOI 10.1061/(ASCE)1084-0699(2000)5:2(156)
    • Tokar, A.S. and Markus, M. (2000) Precipitation-runoff modelling using artificial neural network and conceptual models. Journal of Hydrologie Engineering, V. 5 (2), 156-161. (Pubitemid 30458087)
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 11
    • 1642387025 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using radial basis function network
    • DOI 10.1016/j.jhydrol.2003.10.015, PII S0022169403004335
    • Lin, G. and Chen, L. (2004) A non-linear rainfall-runoff model using radial basis function network. Journal of Hydrology, V. 289, 1-8. (Pubitemid 38355830)
    • (2004) Journal of Hydrology , vol.289 , Issue.1-4 , pp. 1-8
    • Lin, G.-F.1    Chen, L.-H.2
  • 12
    • 12544259920 scopus 로고    scopus 로고
    • Daily river flow forecasting using artificial neural networks and auto-regressive models
    • Kisi, O. (2005) Daily river flow forecasting using artificial neural networks and auto-regressive models. Turkish Journal of Engineering and Environmental Sciences, V. 29, 9-20.
    • (2005) Turkish Journal of Engineering and Environmental Sciences , vol.29 , pp. 9-20
    • Kisi, O.1
  • 13
    • 38049027371 scopus 로고    scopus 로고
    • Performance of neural network models with kalman learning rule for flow routing in a river system
    • Diamantopoulou, M.J., Georgiou, P.E., and Papamichail, D.M. (2007). Performance of neural network models with kalman learning rule for flow routing in a river system. Fresenius Environmental Bulletin, V. 16 (11b), 1474-1484.
    • (2007) Fresenius Environmental Bulletin , vol.16 , Issue.11 , pp. 1474-1484
    • Diamantopoulou, M.J.1    Georgiou, P.E.2    Papamichail, D.M.3
  • 14
    • 0037783429 scopus 로고    scopus 로고
    • Incorporation of ARMA models into flow forecasting by artificial neural networks
    • Cigizoglu, H.K. (2003) Incorporation of ARMA models into flow forecasting by artificial neural networks. Environmetrics, V. 14 (4), 417-427.
    • (2003) Environmetrics , vol.14 , Issue.4 , pp. 417-427
    • Cigizoglu, H.K.1
  • 16
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • DOI 10.1016/S0022-1694(00)00214-6, PII S0022169400002146
    • Coulibaly, P.; Anctil, F. and Bobee, B. (2000) Daily reservoir inflow forecasting using artificial neural Networks with stopped training approach. Journal of Hydrology, V. 230, 244-257. (Pubitemid 30319494)
    • (2000) Journal of Hydrology , vol.230 , Issue.3-4 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 17
    • 73949113911 scopus 로고    scopus 로고
    • Comparison of Regression, ARIMA and ANN Models for Reservoir Inflow Forecasting using Snowmelt Equivalent (a Case study of Karaj)
    • Mohammadi, K.; Eslami, H.R. and Dardashti, S.D. (2005) Comparison of Regression, ARIMA and ANN Models for Reservoir Inflow Forecasting using Snowmelt Equivalent (a Case study of Karaj). Journal of Agricultural Sciences and Technology, V. 7, 17-30.
    • (2005) Journal of Agricultural Sciences and Technology , vol.7 , pp. 17-30
    • Mohammadi, K.1    Eslami, H.R.2    Dardashti, S.D.3
  • 18
    • 58149181821 scopus 로고    scopus 로고
    • Reservoir Inflow modeling using temporal neural networks with forgetting factor approach
    • Razavi, S. and Araghinejad, S. (2009) Reservoir Inflow Modeling Using Temporal Neural Networks with Forgetting Factor Approach. Water Resources Management, V. 23, 39-55.
    • (2009) Water Resources Management , vol.23 , pp. 39-55
    • Razavi, S.1    Araghinejad, S.2
  • 19
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur, G. (2002) Artificial neural networks for sheet sediment transport. Hydrological Science Journal, V. 47 (6), 879-892.
    • (2002) Hydrological Science Journal , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 20
    • 0036611003 scopus 로고    scopus 로고
    • Prediction of sediment load concentration in rivers using artificial neural network model
    • DOI 10.1061/(ASCE)0733-9429(2002)128:6(588)
    • Nagy, H.M.; Watanabe, K. and Hirano, M. (2002) Prediction of Sediment Load Concentration in Rivers using Artificial Neural Network Model. Journal of Hydraulic Engineering ASCE, V. 128 6, 588-595. (Pubitemid 34724746)
    • (2002) Journal of Hydraulic Engineering , vol.128 , Issue.6 , pp. 588-595
    • Nagy, H.M.1    Watanabe, K.2    Hirano, M.3
  • 21
    • 10244249159 scopus 로고    scopus 로고
    • Multi-layer perceptrons with LevenbergMarquardt optimization algorithm for suspended sediment concentration prediction and estimation
    • Kisi, O. (2004) Multi-layer perceptrons with LevenbergMarquardt optimization algorithm for suspended sediment concentration prediction and estimation. Hydrological Sciences Journal, V. 49 (6), 1025-1040.
    • (2004) Hydrological Sciences Journal , vol.49 , Issue.6 , pp. 1025-1040
    • Kisi, O.1
  • 22
    • 27544493548 scopus 로고    scopus 로고
    • Generalized regression neural network in modelling river sediment yield
    • DOI 10.1016/j.advengsoft.2005.05.002, PII S0965997805000888
    • Cigizoglu, H.K. and Alp, M. (2006) Generalized regression neural network in modelling river sediment yield. Advances in Engineering Software, V. 37, 63-68. (Pubitemid 41543025)
    • (2006) Advances in Engineering Software , vol.37 , Issue.2 , pp. 63-68
    • Cigizoglu, H.K.1    Alp, M.2
  • 23
    • 14744288721 scopus 로고    scopus 로고
    • ANN-based sediment yield models for Vamsadhara river basin (India)
    • Agarwal, A.; Singh, R.D.; Mishra, S.K. and Bhunya, P.K. (2005) ANN-based sediment yield models for Vamsadhara river basin (India), Water SA, V. 31 (1), 95-100. (Pubitemid 40328509)
    • (2005) Water SA , vol.31 , Issue.1 , pp. 95-100
    • Agarwal, A.1    Singh, R.D.2    Mishra, S.K.3    Bhunya, P.K.4
  • 24
    • 0000071258 scopus 로고    scopus 로고
    • Regional flood frequency analysis using artificial neural networks
    • Babovic V, Larsen CL, editors Hydroinformatics conference. Copenhagen, Denmark. Rotterdam: A.A. Balkema
    • Hall, M.J. and Minns, A.W. (1998) Regional flood frequency analysis using artificial neural networks. In: Babovic V, Larsen CL, editors Hydroinformatics conference. Proc. 2nd vol., third international conference on hydroinformatics, Copenhagen, Denmark. Rotterdam: A.A. Balkema 759-63.
    • (1998) Proc. 2nd Vol., Third International Conference on Hydroinformatics , pp. 759-763
    • Hall, M.J.1    Minns, A.W.2
  • 25
    • 3242730331 scopus 로고    scopus 로고
    • Regional flood frequency analysis for the Gan-Ming River basin in China
    • DOI 10.1016/j.jhydrol.2004.03.018, PII S0022169404001830
    • Jingyi, Z. and Hall, M. J. (2004) Regional flood frequency analysis for the Gan-Ming River basin in China. Journal of Hydrology, V. 296 (1-4), 98-117. (Pubitemid 38946702)
    • (2004) Journal of Hydrology , vol.296 , Issue.1-4 , pp. 98-117
    • Jingyi, Z.1    Hall, M.J.2
  • 26
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • DOI 10.1016/S0022-1694(98)00242-X, PII S002216949800242X
    • Zealand, CM.; Burn, D.H. and Simonovic, S.P. (1999) Short term streamflow forecasting using artificial neural networks. Journal of Hydrology, V. 214, 32-48. (Pubitemid 29087395)
    • (1999) Journal of Hydrology , vol.214 , Issue.1-4 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 27
    • 0037200134 scopus 로고    scopus 로고
    • Short-term inflow forecasting using an artificial neural network model
    • DOI 10.1002/hyp.1013
    • Xu, Z.X. and Li, J.Y. (2002) Short term inflow forecasting using an artificial neural network model. Hydrological Process, V. 16, 2423-2439. (Pubitemid 34973857)
    • (2002) Hydrological Processes , vol.16 , Issue.12 , pp. 2423-2439
    • Xu, Z.X.1    Li, J.Y.2
  • 28
    • 0032710602 scopus 로고    scopus 로고
    • Precipitation forecasting using a neural network
    • Hall, T. (1999) Precipitation forecasting using a neural network. Weather and Forecasting, V. 14, 338-345.
    • (1999) Weather and Forecasting , vol.14 , pp. 338-345
    • Hall, T.1
  • 29
    • 10644287862 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to the São Paulo region
    • Ramirez, M.C.V.; Velho, H.F.C, and Ferreira, N.J. (2005) Artificial neural network technique for rainfall forecasting applied to the São Paulo region. Journal of Hydrology, V. 301 (1-4), 146-162.
    • (2005) Journal of Hydrology , vol.301 , Issue.1-4 , pp. 146-162
    • Ramirez, M.C.V.1    Velho, H.F.C.2    Ferreira, N.J.3
  • 30
    • 14844322189 scopus 로고    scopus 로고
    • Prediction of total monthly rainfall in Jordan using feed forward backpropagation method
    • Freiwan, M. and Cigizoglu, H.K. (2005) Prediction of total monthly rainfall in Jordan using feed forward backpropagation method. Fresenius Environmental Bulletin, V. 14 (2), 142-51. (Pubitemid 40346656)
    • (2005) Fresenius Environmental Bulletin , vol.14 , Issue.2 , pp. 142-151
    • Freiwan, M.1    Cigizoglu, H.K.2
  • 31
    • 62749207101 scopus 로고    scopus 로고
    • Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods
    • Ustaoglu, B.; Cigizoglu, H.K. and Karaca, M. (2008) Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods. Meteorological Applications, V. 15, 431-445.
    • (2008) Meteorological Applications , vol.15 , pp. 431-445
    • Ustaoglu, B.1    Cigizoglu, H.K.2    Karaca, M.3
  • 32
    • 79951847521 scopus 로고    scopus 로고
    • Univariate modelling of monthly maximum temperature time series over northeast India: Neural network versus Yule-Walker equation based approach
    • Chattopadhyay, S.; Jhajharia, D. and Chattopadhyay, G. (2010). Univariate modelling of monthly maximum temperature time series over northeast India: neural network versus Yule-Walker equation based approach. Meteorological Applications, V. 18 (1), 70-82.
    • (2010) Meteorological Applications , vol.18 , Issue.1 , pp. 70-82
    • Chattopadhyay, S.1    Jhajharia, D.2    Chattopadhyay, G.3
  • 34
    • 0036843660 scopus 로고    scopus 로고
    • Modelling evaporation using an artificial neural network algorithm
    • Sudheer, K.P.; Gosain, A.K.; Mohana, R.D. and Saheb, S.M. (2002) Modelling evaporation using an artificial neural network algorithm. Hydrological Processes, V. 16, 3189-3202.
    • (2002) Hydrological Processes , vol.16 , pp. 3189-3202
    • Sudheer, K.P.1    Gosain, A.K.2    Mohana, R.D.3    Saheb, S.M.4
  • 35
    • 31444439227 scopus 로고    scopus 로고
    • Artificial neural network models of daily pan evaporation
    • DOI 10.1061/(ASCE)1084-0699(2006)11:1(65)
    • Keskin, M.E. and Terzi, O. (2006) Artificial Neural Network Models of Daily Pan Evaporation. Journal of Hydrologic Engineering, V. 11 (1), 65-70. (Pubitemid 43149473)
    • (2006) Journal of Hydrologic Engineering , vol.11 , Issue.1 , pp. 65-70
    • Keskin, M.E.1    Terzi, O.2
  • 36
    • 46449089657 scopus 로고    scopus 로고
    • Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation
    • DOI 10.1002/hyp.6819
    • Jain, S.; Nayak, P. and Sudheer, K. (2008) Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrological Processes, V. 22, 2225-2234. (Pubitemid 351927463)
    • (2008) Hydrological Processes , vol.22 , Issue.13 , pp. 2225-2234
    • Jain, S.K.1    Nayak, P.C.2    Sudheer, K.P.3
  • 37
    • 0003217868 scopus 로고    scopus 로고
    • Neural network estimation of sanitary flows
    • Babovic V, Larsen CL, editors. Denmark
    • Djebbar, Y. and Alila, Y. (1998) Neural network estimation of sanitary flows. In: Babovic V, Larsen CL, editors. Third International conference on hydroinformatics, V. 2, Denmark.
    • (1998) Third International Conference on Hydroinformatics , vol.2
    • Djebbar, Y.1    Alila, Y.2
  • 38
    • 16444367031 scopus 로고    scopus 로고
    • Parameter estimation in groundwater hydrology using artificial neural networks
    • DOI 10.1061/(ASCE)0887-3801(2003)17:4(281)
    • Shigidi, A. and Garcia, A.L. (2003) Parameter Estimation in Groundwater Hydrology Using Artificial Neural Networks. Journal of Computing in Civil Engineering, V. 17 (4), 281-289. (Pubitemid 40475452)
    • (2003) Journal of Computing in Civil Engineering , vol.17 , Issue.4 , pp. 281-289
    • Shigidi, A.1    Garcia, L.A.2
  • 39
    • 20344369583 scopus 로고    scopus 로고
    • Forecasting the Groundwater Level of an Aquifer with the use of Neural Networks
    • Daliakopoulos, I.; Coulibaly, P. and Tsanis, I.K. (2004) Forecasting the Groundwater Level of an Aquifer with the use of Neural Networks. Journal of Hydrology, V. 309, 229-240.
    • (2004) Journal of Hydrology , vol.309 , pp. 229-240
    • Daliakopoulos, I.1    Coulibaly, P.2    Tsanis, I.K.3
  • 41
    • 33644655239 scopus 로고    scopus 로고
    • An evaluation of artificial neural network technique for the determination of infiltration model parameters
    • DOI 10.1016/j.asoc.2004.12.007, PII S1568494605000177
    • Jain, A. and Kumar, A. (2006) An evaluation of artificial neural network technique for the determination of infiltration model parameters. Applied Software Computing, V. 6, 272-282. (Pubitemid 43326126)
    • (2006) Applied Soft Computing Journal , vol.6 , Issue.3 , pp. 272-282
    • Jain, A.1    Kumar, A.2
  • 43
    • 0035977694 scopus 로고    scopus 로고
    • Groups and neural networks based streamflow data infilling procedures
    • DOI 10.1016/S0022-1694(00)00332-2, PII S0022169400003322
    • Khalil, M.; Panu, U.S. and Lennox, W.C. (2001) Group and neural networks based streamflow data infilling procedures. Journal of Hydrology, V. 241, 153-176. (Pubitemid 32119731)
    • (2001) Journal of Hydrology , vol.241 , Issue.3-4 , pp. 153-176
    • Khalil, M.1    Panu, U.S.2    Lennox, W.C.3
  • 44
    • 22844446707 scopus 로고    scopus 로고
    • Infilling streamflow data using feed-forward back-propagation (BP) artificial neural networks: Application of standard BP and pseudo Mac Laurin power series BP techniques
    • Illunga, M. and Stephenson, D. (2005) Infilling streamflow data using feed-forward back-propagation (BP) artificial neural networks: Application of standard BP and pseudo Mac Laurin power series BP techniques Water SA, V. 31 (2), 171-176.
    • (2005) Water SA , vol.31 , Issue.2 , pp. 171-176
    • Illunga, M.1    Stephenson, D.2
  • 45
    • 23044443211 scopus 로고    scopus 로고
    • Application of the generalized regression neural networks to intermittent flow forecasting and estimation
    • Cigizoglu, H.K. (2005a) Application of the Generalized Regression Neural Networks to Intermittent Flow Forecasting and Estimation. Journal of Hydrologic Engineering, V. 10 (4), 336-341.
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.4 , pp. 336-341
    • Cigizoglu, H.K.1
  • 46
    • 27944503514 scopus 로고    scopus 로고
    • Generalized regression neural networks in monthly flow forecasting
    • Cigizoglu, H.K. (2005b) Generalized regression neural networks in monthly flow forecasting. Civil Engineering and Environmental Systems, V. 22 (2), 71-84.
    • (2005) Civil Engineering and Environmental Systems , vol.22 , Issue.2 , pp. 71-84
    • Cigizoglu, H.K.1
  • 47
    • 71649101242 scopus 로고    scopus 로고
    • An RBF-based model with an information processor for forecasting hourly reservoir inflow during typhoons
    • Lin, G.; Wu, M.; Chen, L. and Tsai, F. (2009) An RBF-based model with an information processor for forecasting hourly reservoir inflow during typhoons. Hydrological Process, V. 23, 3598-3609.
    • (2009) Hydrological Process , vol.23 , pp. 3598-3609
    • Lin, G.1    Wu, M.2    Chen, L.3    Tsai, F.4
  • 50
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data
    • Cigizoglu, H.K. and Kisi, O. (2005) Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Nordic Hydrology, V. 36 (1), 49-64. (Pubitemid 40620979)
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 49-64
    • Cigizoglu, H.K.1    Kisi, O.2
  • 52
    • 0028543366 scopus 로고
    • Training feed forward techniques with the Marquardt algorithm
    • Hagan, M.T. and Menhaj, M.B. (1994) Training feed forward techniques with the Marquardt algorithm. IEEE Transactions on Neural Networks, V. 5 (6), 989-993.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 54
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht, D.F. (1991) A general regression neural network. IEEE Transactions Neural Network, V. 2 (6), 568-76.
    • (1991) IEEE Transactions Neural Network , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 55
    • 0002322469 scopus 로고
    • On a test of whether one of two random variables is stochastically larger than the other
    • Mann, H.B., Whitney, D.R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, V. 18, 50-60.
    • (1947) Annals of Mathematical Statistics , vol.18 , pp. 50-60
    • Mann, H.B.1    Whitney, D.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.