메뉴 건너뛰기




Volumn 15, Issue 4, 2008, Pages 431-445

Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods

Author keywords

Daily temperature time series; Feed forward back propagation; Generalized regression neural network; Multiple linear regression; Radial basis function

Indexed keywords

AGRICULTURAL ROBOTS; AGRICULTURE; BACKPROPAGATION; FORECASTING; FUNCTIONS; LINEAR REGRESSION; MEAN SQUARE ERROR; TIME SERIES; WATER RESOURCES;

EID: 62749207101     PISSN: 13504827     EISSN: 14698080     Source Type: Journal    
DOI: 10.1002/met.83     Document Type: Article
Times cited : (109)

References (48)
  • 1
    • 33749443208 scopus 로고    scopus 로고
    • Suspended sediment load simulation by two artificial neural network methods using hydro meteorological data
    • Alp M, Cigizoglu HK. 2007. Suspended sediment load simulation by two artificial neural network methods using hydro meteorological data. Environmental Modelling & Software 22(1): 2-13.
    • (2007) Environmental Modelling & Software , vol.22 , Issue.1 , pp. 2-13
    • Alp, M.1    Cigizoglu, H.K.2
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic application
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE (Task Committee on Application of Artificial Neural Networks in Hydrology). 2000. Artificial neural networks in hydrology. II: Hydrologic application. Journal of Hydrologic Engineering, ASCE 5(2): 124-137.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 124-137
  • 4
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead DS, Lowe D. 1988. Multivariable functional interpolation and adaptive networks. Complex Systems 2: 321-355.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 5
    • 0036338810 scopus 로고    scopus 로고
    • The use of artificial neural networks in ecological analysis: Estimating microhabitat temperature
    • Bryant S, Shreeve TG. 2002. The use of artificial neural networks in ecological analysis: estimating microhabitat temperature. Ecological Entomology 27: 424-432.
    • (2002) Ecological Entomology , vol.27 , pp. 424-432
    • Bryant, S.1    Shreeve, T.G.2
  • 6
    • 0031396070 scopus 로고    scopus 로고
    • Downscaling large-scale circulation to local winter rainfall in North-eastern Mexico
    • Cavazos T. 1997. Downscaling large-scale circulation to local winter rainfall in North-eastern Mexico. International Journal of Climatology 17: 1069-1082.
    • (1997) International Journal of Climatology , vol.17 , pp. 1069-1082
    • Cavazos, T.1
  • 7
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu HK. 2003a. Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 48(3): 349-361.
    • (2003) Hydrological Sciences Journal-Journal Des Sciences Hydrologiques , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 8
    • 0037783429 scopus 로고    scopus 로고
    • Incorporation of ARMA models into flow forecasting by artificial neural networks
    • Cigizoglu HK. 2003b. Incorporation of ARMA models into flow forecasting by artificial neural networks. Environmetrics 14: 417-427.
    • (2003) Environmetrics , vol.14 , pp. 417-427
    • Cigizoglu, H.K.1
  • 9
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi-layer perceptions
    • Cigizoglu HK. 2004. Estimation and forecasting of daily suspended sediment data by multi-layer perceptions. Advances in Water Resources 27: 185-195.
    • (2004) Advances in Water Resources , vol.27 , pp. 185-195
    • Cigizoglu, H.K.1
  • 10
    • 27944503514 scopus 로고    scopus 로고
    • Generalized regression neural network in monthly flow forecasting
    • Cigizoglu HK. 2005a. Generalized regression neural network in monthly flow forecasting. Civil Engineering and Environmental Systems 22: 71-84.
    • (2005) Civil Engineering and Environmental Systems , vol.22 , pp. 71-84
    • Cigizoglu, H.K.1
  • 11
    • 23044443211 scopus 로고    scopus 로고
    • Application of the generalized regression neural networks to intermittent flow forecasting and estimation
    • Cigizoglu HK. 2005b. Application of the generalized regression neural networks to intermittent flow forecasting and estimation. ASCE, Journal of Hydrologic Engineering 10(4): 336-341.
    • (2005) ASCE, Journal of Hydrologic Engineering , vol.10 , Issue.4 , pp. 336-341
    • Cigizoglu, H.K.1
  • 12
    • 27544493548 scopus 로고    scopus 로고
    • Generalized regression neural network in modelling river sediment yield
    • Cigizoglu HK, Alp M. 2006. Generalized regression neural network in modelling river sediment yield. Advances in Engineering Software 37: 3763-3768.
    • (2006) Advances in Engineering Software , vol.37 , pp. 3763-3768
    • Cigizoglu, H.K.1    Alp, M.2
  • 13
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • Cigizoglu HK, Kisi O. 2006. Methods to improve the neural network performance in suspended sediment estimation. Journal of Hydrology 317: 221-238.
    • (2006) Journal of Hydrology , vol.317 , pp. 221-238
    • Cigizoglu, H.K.1    Kisi, O.2
  • 14
    • 0031944625 scopus 로고    scopus 로고
    • 2 climate change scenarios for the Susquehanna Basin: Down-scaling from the genesis general circulation model
    • 2 climate change scenarios for the Susquehanna Basin: Down-scaling from the genesis general circulation model. International Journal of Climatology 18: 65-76.
    • (1998) International Journal of Climatology , vol.18 , pp. 65-76
    • Crane, R.G.1    Hewitson, B.C.2
  • 15
    • 33645989739 scopus 로고    scopus 로고
    • Temporal neural networks for downscaling climate variability and extremes
    • Dibike YB, Coulibaly P. 2006. Temporal neural networks for downscaling climate variability and extremes. Neural Network 19: 135-144.
    • (2006) Neural Network , vol.19 , pp. 135-144
    • Dibike, Y.B.1    Coulibaly, P.2
  • 17
    • 62749194785 scopus 로고
    • Istanbul Technical University, Hydrogeology Institute Publication: Istanbul, In Turkish
    • Erinc S. 1957. Applied Climatology and Climatic Conditions of Turkey. Istanbul Technical University, Hydrogeology Institute Publication: Istanbul, [In Turkish].
    • (1957) Applied Climatology and Climatic Conditions of Turkey
    • Erinc, S.1
  • 18
    • 14844322189 scopus 로고    scopus 로고
    • Prediction of total monthly rainfall in Jordan using feed forward back propagation method
    • Freiwan M, Cigizoglu HK. 2005. Prediction of total monthly rainfall in Jordan using feed forward back propagation method. Fresenius Environmental Bulletin 14(2): 142-151.
    • (2005) Fresenius Environmental Bulletin , vol.14 , Issue.2 , pp. 142-151
    • Freiwan, M.1    Cigizoglu, H.K.2
  • 19
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron) a review of applications in the atmospheric sciences
    • Gardner MW, Dorling SR. 1998. Artificial neural networks (the multilayer perceptron) a review of applications in the atmospheric sciences. Atmospheric Environment 6(32): 2627-2636.
    • (1998) Atmospheric Environment , vol.6 , Issue.32 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 20
    • 0033962994 scopus 로고    scopus 로고
    • Statistical surface ozone models: An improved methodology to account for non-linear behaviour
    • Gardner MW, Dorling SR. 2000. Statistical surface ozone models: an improved methodology to account for non-linear behaviour. Atmospheric Environment 34: 21-34.
    • (2000) Atmospheric Environment , vol.34 , pp. 21-34
    • Gardner, M.W.1    Dorling, S.R.2
  • 21
    • 0027042223 scopus 로고
    • Large-scale atmospheric controls on local precipitation in tropical Mexico
    • Hewitson BC, Crane RG. 1992. Large-scale atmospheric controls on local precipitation in tropical Mexico. Geophysical Research Letters 19: 1835-1838.
    • (1992) Geophysical Research Letters , vol.19 , pp. 1835-1838
    • Hewitson, B.C.1    Crane, R.G.2
  • 22
    • 0030417301 scopus 로고    scopus 로고
    • Climate downscaling: Techniques and application
    • Hewitson BC, Crane RG. 1996. Climate downscaling: techniques and application. Climate Research 7: 85-95.
    • (1996) Climate Research , vol.7 , pp. 85-95
    • Hewitson, B.C.1    Crane, R.G.2
  • 26
    • 8744225698 scopus 로고    scopus 로고
    • Neural network estimation of air temperatures from AVHRR Data
    • Jang JD, Viau AA. 2004. Neural network estimation of air temperatures from AVHRR Data. International Journal of Remote Sensing 25: 4541-4554.
    • (2004) International Journal of Remote Sensing , vol.25 , pp. 4541-4554
    • Jang, J.D.1    Viau, A.A.2
  • 29
    • 62749144725 scopus 로고    scopus 로고
    • The effects of climatic conditions on fruit production in Geyve
    • Istanbul University: Istanbul, 8-10 September
    • Kaymaz B, Ikiel C. 2004. The effects of climatic conditions on fruit production in Geyve. International Symposium on Earth System Science (ISES), Istanbul University: Istanbul, 8-10 September, 2004.
    • (2004) International Symposium on Earth System Science (ISES)
    • Kaymaz, B.1    Ikiel, C.2
  • 31
    • 0000632352 scopus 로고    scopus 로고
    • Experiments in short-term precipitation forecasting using artificial neural networks
    • Kuligowski RJ, Barros A. 1998. Experiments in short-term precipitation forecasting using artificial neural networks. Monthly Weather Review 126: 470-482.
    • (1998) Monthly Weather Review , vol.126 , pp. 470-482
    • Kuligowski, R.J.1    Barros, A.2
  • 32
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the predictions and forecasting of water resources variables: Review of modeling issues and applications
    • Maier H, Dandy G. 2000. Neural networks for the predictions and forecasting of water resources variables: Review of modeling issues and applications. Environmental Modelling & Software 15: 101-124.
    • (2000) Environmental Modelling & Software , vol.15 , pp. 101-124
    • Maier, H.1    Dandy, G.2
  • 33
    • 4544314347 scopus 로고    scopus 로고
    • Predict sea level variations with artificial neural networks at Hillarys boat harbour, Western Australia
    • Makarynskyy O, Makarynska D, Kuhn M, Featherstone WE. 2004. Predict sea level variations with artificial neural networks at Hillarys boat harbour, Western Australia. Estuarine Coastal and Shelf Science 61: 351-360.
    • (2004) Estuarine Coastal and Shelf Science , vol.61 , pp. 351-360
    • Makarynskyy, O.1    Makarynska, D.2    Kuhn, M.3    Featherstone, W.E.4
  • 35
    • 10644287862 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to the São Paulo region
    • Ramirez MCV, Velhob HFC, Ferreiraa NJ. 2005. Artificial neural network technique for rainfall forecasting applied to the São Paulo region. Journal of Hydrology 301: 146-162.
    • (2005) Journal of Hydrology , vol.301 , pp. 146-162
    • Ramirez, M.C.V.1    Velhob, H.F.C.2    Ferreiraa, N.J.3
  • 36
    • 0035875227 scopus 로고    scopus 로고
    • Downscaling temperature and precipitation: A comparison of regression-based methods and artificial neural networks
    • Schoof JT, Pryor SC. 2001. Downscaling temperature and precipitation: a comparison of regression-based methods and artificial neural networks. International Journal of Climatology 21: 773-779.
    • (2001) International Journal of Climatology , vol.21 , pp. 773-779
    • Schoof, J.T.1    Pryor, S.C.2
  • 40
    • 21844503359 scopus 로고
    • A study of artic ice and sea level pressure using pop and neural network models
    • Tang B, Flato GM, Greg H. 1994. A study of artic ice and sea level pressure using pop and neural network models. Atmosphere-Ocean 32(3): 507-529.
    • (1994) Atmosphere-Ocean , vol.32 , Issue.3 , pp. 507-529
    • Tang, B.1    Flato, G.M.2    Greg, H.3
  • 42
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural networks
    • Thirumalaiah K, Deo MC. 1998. River stage forecasting using artificial neural networks. Journal of Hydrologic Engineering 3(1): 26-32.
    • (1998) Journal of Hydrologic Engineering , vol.3 , Issue.1 , pp. 26-32
    • Thirumalaiah, K.1    Deo, M.C.2
  • 43
    • 0034174356 scopus 로고    scopus 로고
    • Hydrological forecasting using artificial neural networks
    • Thirumalaiah K, Deo MC. 2000. Hydrological forecasting using artificial neural networks. Journal of Hydrologic Engineering 5(2): 180-189.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 180-189
    • Thirumalaiah, K.1    Deo, M.C.2
  • 45
    • 0033533301 scopus 로고    scopus 로고
    • Simulation of daily temperatures for climate change scenarios over Portugal: A neural network model approach
    • Trigo RM, Palutikof JP. 1999. Simulation of daily temperatures for climate change scenarios over Portugal: a neural network model approach. Climate Research 13: 45-59.
    • (1999) Climate Research , vol.13 , pp. 45-59
    • Trigo, R.M.1    Palutikof, J.P.2
  • 47
    • 22944479275 scopus 로고    scopus 로고
    • Retrieving atmospheric temperature profiles from AMSU-A data with neural networks
    • Zhigang Y, Hongbin C, Longfu L. 2005. Retrieving atmospheric temperature profiles from AMSU-A data with neural networks. Advances in Atmospheric Sciences 22: 606-616.
    • (2005) Advances in Atmospheric Sciences , vol.22 , pp. 606-616
    • Zhigang, Y.1    Hongbin, C.2    Longfu, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.