메뉴 건너뛰기




Volumn 49, Issue 6, 2004, Pages 1025-1040

Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation

Author keywords

Estimation; Generalized regression neural networks; Multi layer perceptrons; Multi linear regression; Prediction; Radial basis function; Suspended sediment concentration

Indexed keywords

ALGORITHMS; DATA REDUCTION; NEURAL NETWORKS; OPTIMIZATION; RADIAL BASIS FUNCTION NETWORKS;

EID: 10244249159     PISSN: 02626667     EISSN: None     Source Type: Journal    
DOI: 10.1623/hysj.49.6.1025.55720     Document Type: Article
Times cited : (242)

References (42)
  • 1
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead, D. & Lowe, D. (1988) Multivariable functional interpolation and adaptive networks. Complex Syst. 2, 321-355.
    • (1988) Complex Syst. , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 2
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang, F.-J. & Chen, Y.-C. (2001) A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. J. Hydrol. 245, 153-164.
    • (2001) J. Hydrol. , vol.245 , pp. 153-164
    • Chang, F.-J.1    Chen, Y.-C.2
  • 3
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen, S., Cowan, C. F. N. & Grant, P. M. (1991) Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Networks 2(2), 302-309.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 4
    • 0037903280 scopus 로고    scopus 로고
    • Modelling and forecasting of hydrological variables using artificial neural networks: The Kafue River sub-basin
    • Chibanga, R., Berlamont, J. & Vandewalle, J. (2003) Modelling and forecasting of hydrological variables using artificial neural networks: the Kafue River sub-basin. Hydrol. Sci. J. 48(3), 363-379.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 363-379
    • Chibanga, R.1    Berlamont, J.2    Vandewalle, J.3
  • 5
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu, H. K. (2003) Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol. Sci. J. 48 3), 349-361.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 6
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data
    • (in press)
    • Cigizoglu, H. K. & Kişi, O. (2004) Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Nordic Hydrol. 36(1). (in press)
    • (2004) Nordic Hydrol. , vol.36 , Issue.1
    • Cigizoglu, H.K.1    Kişi, O.2
  • 7
    • 0031932822 scopus 로고    scopus 로고
    • Using neural networks to assess the influenee of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers
    • Clair, T. A. & Ehrman, J. M. (1998) Using neural networks to assess the influenee of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers. Water Resour. Res. 34(3), 447-455.
    • (1998) Water Resour. Res. , vol.34 , Issue.3 , pp. 447-455
    • Clair, T.A.1    Ehrman, J.M.2
  • 8
    • 0032829433 scopus 로고    scopus 로고
    • Prévision hydrologique par réseaux de neurones artificiels: État de l'art
    • Coulibaly, P., Anctil, F. & Bobée, B. (1999) Prévision hydrologique par réseaux de neurones artificiels: état de l'art. Can. J. Civil Engng 26(3), 293-304.
    • (1999) Can. J. Civil Engng. , vol.26 , Issue.3 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 9
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function. Mathematics of control
    • Cybenco, G. (1989) Approximation by superposition of a sigmoidal function. Mathematics of control. Signals and Systems 2, 303-314.
    • (1989) Signals and Systems , vol.2 , pp. 303-314
    • Cybenco, G.1
  • 10
    • 0037562812 scopus 로고    scopus 로고
    • Feed forward neural networks modeling for K-P interactions
    • El-Bakyr, M. Y. (2003) Feed forward neural networks modeling for K-P interactions. Chaos, Solutons & Fractals 18(5), 995-1000.
    • (2003) Chaos, Solutons & Fractals , vol.18 , Issue.5 , pp. 995-1000
    • El-Bakyr, M.Y.1
  • 11
    • 0035281815 scopus 로고    scopus 로고
    • 2D unit sediment graph theory
    • Guldal, V. & Muftuoglu, R. F. (2001) 2D unit sediment graph theory. J. Hydrol. Engng 6(2), 132-140.
    • (2001) J. Hydrol. Engng , vol.6 , Issue.2 , pp. 132-140
    • Guldal, V.1    Muftuoglu, R.F.2
  • 12
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquardt algorithm
    • Hagan M. T. & Menhaj M. B. (1994) Training feed forward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 6, 861-867.
    • (1994) IEEE Trans. Neural Networks , vol.6 , pp. 861-867
    • Hagan, M.T.1    Menhaj, M.B.2
  • 14
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M. & White, H. (1989) Multilayer feedforward networks are universal approximators. Neural Networks 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 15
    • 0034746272 scopus 로고    scopus 로고
    • Development of integrated sediment rating curves using ANNs
    • Jain, S. K. (2001) Development of integrated sediment rating curves using ANNs. J. Hydraul. Engng ASCE 127(1), 30-37.
    • (2001) J. Hydraul. Engng ASCE , vol.127 , Issue.1 , pp. 30-37
    • Jain, S.K.1
  • 16
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain, S. K., Das, D. & Srivastava, D. K. (1999) Application of ANN for reservoir inflow prediction and operation. J. Water Resour. Plan. Manage. ASCE 125(5), 263-271.
    • (1999) J. Water Resour. Plan. Manage. ASCE , vol.125 , Issue.5 , pp. 263-271
    • Jain, S.K.1    Das, D.2    Srivastava, D.K.3
  • 17
    • 0001938874 scopus 로고
    • Neural network and its application to rainfall-runoff forecasting
    • Kang, K. W., Park, C. Y. & Kim, J. H. (1993) Neural network and its application to rainfall-runoff forecasting. Korean Hydrosci. 4 1-9.
    • (1993) Korean Hydrosci. , vol.4 , pp. 1-9
    • Kang, K.W.1    Park, C.Y.2    Kim, J.H.3
  • 18
    • 0038113313 scopus 로고    scopus 로고
    • Modelling of plasma etching using a generalized regression neural network
    • Kim, B., Kim, S. & Kim, K. (2003) Modelling of plasma etching using a generalized regression neural network. Vacuum, 71, 497-503.
    • (2003) Vacuum , vol.71 , pp. 497-503
    • Kim, B.1    Kim, S.2    Kim, K.3
  • 19
    • 10244236446 scopus 로고    scopus 로고
    • River sediment yield modeling using artificial neural networks
    • Kisi, O. (2002) River sediment yield modeling using artificial neural networks. ASCE's First Virtual World Congress for Civil Engineering, (http://www.ceworld.org/ceworld/Presentations /WaterranEnvironment/Kisi.cfm).
    • (2002) ASCE's First Virtual World Congress for Civil Engineering
    • Kisi, O.1
  • 20
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi, O. (2004a) River flow modeling using artificial neural networks, J. Hydrol. Engng ASCE 9(1), 60-43.
    • (2004) J. Hydrol. Engng ASCE , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 21
    • 17644433091 scopus 로고    scopus 로고
    • Daily suspended sediment modeling using fuzzy-differential evolution approach
    • Kisi, O. (2004b) Daily suspended sediment modeling using fuzzy-differential evolution approach. Hydrol. Sci. J. 49 1), 183-197.
    • (2004) Hydrol. Sci. J. , vol.49 , Issue.1 , pp. 183-197
    • Kisi, O.1
  • 22
    • 0038009289 scopus 로고    scopus 로고
    • Radial basis function networks applied to DNBR calculation in digital core protection systems
    • Lee, G. C. & Chang, S. H. (2003) Radial basis function networks applied to DNBR calculation in digital core protection systems. Annals of Nuclear Energy 30, 1561-1572.
    • (2003) Annals of Nuclear Energy , vol.30 , pp. 1561-1572
    • Lee, G.C.1    Chang, S.H.2
  • 23
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for prediction and forecasting of water resources variables: Review of modelling issues and applications
    • Maier, H. R. & Dandy, G. C. (2000) Neural networks for prediction and forecasting of water resources variables: review of modelling issues and applications. Environ. Modelling and Software 15, 101-124.
    • (2000) Environ. Modelling and Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 24
    • 0000169232 scopus 로고
    • An algorithm for least squares estimation of non-linear parameters
    • Marquardt, D. (1963) An algorithm for least squares estimation of non-linear parameters. J. Soc. Ind. Appl. Math. 431-441.
    • (1963) J. Soc. Ind. Appl. Math. , pp. 431-441
    • Marquardt, D.1
  • 25
    • 0023962844 scopus 로고
    • Uncertainty in suspended sediment transport curves
    • McBean, E. A. & Al-Nassri, S. (1988) Uncertainty in suspended sediment transport curves. J. Hydrol. Engng ASCE 114(1), 63-74.
    • (1988) J. Hydrol. Engng ASCE , vol.114 , Issue.1 , pp. 63-74
    • McBean, E.A.1    Al-Nassri, S.2
  • 26
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Poggio, T. & Girosi, F. (1990) Regularization algorithms for learning that are equivalent to multilayer networks. Science 2247, 978-982.
    • (1990) Science , vol.2247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 27
    • 0030616293 scopus 로고    scopus 로고
    • Parameterisation, calibration and validation of distributed hydrological models
    • Refsgaard, J. C. (1997) Parameterisation, calibration and validation of distributed hydrological models. J. Hydrol. 198, 69-97.
    • (1997) J. Hydrol. , vol.198 , pp. 69-97
    • Refsgaard, J.C.1
  • 29
    • 0029663691 scopus 로고    scopus 로고
    • Fuzzy learning decomposition for the scheduling of hydroelectric power systems
    • Saad, M., Bigras, P., Turgeon, A. & Duquette, R. (1996) Fuzzy learning decomposition for the scheduling of hydroelectric power systems. Water Resour. Res. 32(1 ), 179-186.
    • (1996) Water Resour. Res. , vol.32 , Issue.1 , pp. 179-186
    • Saad, M.1    Bigras, P.2    Turgeon, A.3    Duquette, R.4
  • 30
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin, A. Y. (1997) Application of a neural network technique to rainfall-runoff modelling. J. Hydrol. 199, 272-294.
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 31
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase space reconstruction and artificial neural networks approaches
    • Sivakumar, B., Jayawardena, A. W. & Fernando, T. M. K. G. (2002) River flow forecasting: use of phase space reconstruction and artificial neural networks approaches. J. Hydrol. 265, 225-245.
    • (2002) J. Hydrol. , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 32
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall-runoff modelling
    • Solomatine, D. P. & Dulal, K. N. (2003) Model trees as an alternative to neural networks in rainfall-runoff modelling. Hydrol. Sci. J. 48(3), 399-411.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 33
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht, D. F. ( 1991 ) A general regression neural network. IEEE Trans. Neural Networks 2(6), 568-576.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 34
    • 0038110938 scopus 로고    scopus 로고
    • Quantitative and qualitative analysis of VOCs mixtures by means of a microsensors array and different evaluation methods
    • Taurino, A. M., Distante, C., Siciliano, P. & Vasanelli, L. (2003) Quantitative and qualitative analysis of VOCs mixtures by means of a microsensors array and different evaluation methods. Sensors and Actuators 93, 117-125.
    • (2003) Sensors and Actuators , vol.93 , pp. 117-125
    • Taurino, A.M.1    Distante, C.2    Siciliano, P.3    Vasanelli, L.4
  • 35
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur, G. (2002) Artificial neural networks for sheet sediment transport. Hydrol. Sci. J. 47(6), 879-892.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 36
    • 0242658864 scopus 로고    scopus 로고
    • Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces
    • Tayfur, G., Ozdemir, S. & Singh, V. P. (2002) Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces. Adv. Water Resour. 26, 1249-1256.
    • (2002) Adv. Water Resour. , vol.26 , pp. 1249-1256
    • Tayfur, G.1    Ozdemir, S.2    Singh, V.P.3
  • 37
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar, A. S. & Johnson, P. A. (1999) Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Engng ASCE 4(3), 232-239.
    • (1999) J. Hydrol. Engng ASCE , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 40
    • 0030074908 scopus 로고    scopus 로고
    • SHESED: A physically based, distributed erosion and sediment yield component for the SHE hydrological modeling system
    • Wicks, J. M. & Bathurst, J. C. (1996) SHESED: a physically based, distributed erosion and sediment yield component for the SHE hydrological modeling system. J. Hydrol. 175, 213-238.
    • (1996) J. Hydrol. , vol.175 , pp. 213-238
    • Wicks, J.M.1    Bathurst, J.C.2
  • 41
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby, R. L., Abrahart, R. J. & Dawson, C. W. (2003) Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 48(2), 163-181.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 42
    • 0000251270 scopus 로고
    • Comparisons between fuzzy reasoning and neural network methods to forecast runoff discharge
    • Zhu, M. L. & Fujita, M. (1994) Comparisons between fuzzy reasoning and neural network methods to forecast runoff discharge. J. Hydrosci. Hydraul. Engng 12(2), 131-141.
    • (1994) J. Hydrosci. Hydraul. Engng , vol.12 , Issue.2 , pp. 131-141
    • Zhu, M.L.1    Fujita, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.