메뉴 건너뛰기




Volumn 16, Issue 11 B, 2007, Pages 1474-1484

Performance of neural network models with Kalman learning rule for flow routing in a river system

Author keywords

Artificial neural networks; Backpropagation; Cascade correlation; Kalman learning rule; River flow routing; Time lagged daily flows

Indexed keywords

ARTIFICIAL NEURAL NETWORK; FORECASTING METHOD; KALMAN FILTER; LEARNING; MODELING; PERFORMANCE ASSESSMENT; RESERVOIR; RIVER FLOW; ROUTING; WATER MANAGEMENT;

EID: 38049027371     PISSN: 10184619     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (11)

References (42)
  • 3
    • 85003034722 scopus 로고    scopus 로고
    • Hipel, K.W. and McLeod, A.I. (1994) Time series modelling of water resources and environmental systems. Elsevier Science B.V., Development in Water Science, No. 45.
    • Hipel, K.W. and McLeod, A.I. (1994) Time series modelling of water resources and environmental systems. Elsevier Science B.V., Development in Water Science, No. 45.
  • 5
    • 0033957764 scopus 로고    scopus 로고
    • Neural Networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H.R. and Dandy, G.C. (2000) Neural Networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environmental Modeling and Software; 15, 101-124.
    • (2000) Environmental Modeling and Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 6
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in Hydrlogy. I. Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000) Artificial neural networks in Hydrlogy. I. Preliminary concepts. Journal of Hydrologic Engineering, 5(2), 115-123.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 115-123
  • 8
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier, H.R. and Dandy, G.C. (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resources Research, 32, 1013-1022.
    • (1996) Water Resources Research , vol.32 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 9
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-rumoff models
    • Minns, A.W. and Hall, M.J. (1996) Artificial neural networks as rainfall-rumoff models. Hydrological Science Journal, 41, 399-417.
    • (1996) Hydrological Science Journal , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 10
    • 0031239528 scopus 로고    scopus 로고
    • Forecasting raw-water quality parameters for the North Saskatchewan river by neural network modelling
    • Zhang, Q. and Stanley, S.J. (1997) Forecasting raw-water quality parameters for the North Saskatchewan river by neural network modelling. Water Research, 31, 2340-2350.
    • (1997) Water Research , vol.31 , pp. 2340-2350
    • Zhang, Q.1    Stanley, S.J.2
  • 11
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar, N. and Thandaveswara, B.S. (1999) A non-linear rainfall-runoff model using an artificial neural network. Journal of Hydrology, 216, 32-55.
    • (1999) Journal of Hydrology , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 12
    • 0033019602 scopus 로고    scopus 로고
    • Short tern streamflow forecasting using artificial neural networks
    • Zealand, C.M., Burn, D.H. and Simonovic, S.P. (1999) Short tern streamflow forecasting using artificial neural networks. Journal of Hydrology, 214, 32-48.
    • (1999) Journal of Hydrology , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 14
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly, P., Anctil, F. and Bobbe, B. (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology, 230, 244-257.
    • (2000) Journal of Hydrology , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobbe, B.3
  • 16
    • 0031259688 scopus 로고    scopus 로고
    • Methods for combining the outputs of different rainfall-runoff models
    • Shamseldin, A.Y., O'Connor, K.M. and Liang, G.C. (1997) Methods for combining the outputs of different rainfall-runoff models. Journal of Hydrology, 197, 203-229.
    • (1997) Journal of Hydrology , vol.197 , pp. 203-229
    • Shamseldin, A.Y.1    O'Connor, K.M.2    Liang, G.C.3
  • 17
    • 4644274685 scopus 로고    scopus 로고
    • Runoff modelling through back propagation artificial neural networks with variable rainfall-runoff data
    • Agarwal, J. and Singh, R.D. (2004) Runoff modelling through back propagation artificial neural networks with variable rainfall-runoff data. Water Resources Management, 18, 285-300.
    • (2004) Water Resources Management , vol.18 , pp. 285-300
    • Agarwal, J.1    Singh, R.D.2
  • 18
    • 2542447559 scopus 로고    scopus 로고
    • River flow forecasting using recurrent neural networks
    • Kumar, D.N, Raju, K.S. and Sathish, T. (2004) River flow forecasting using recurrent neural networks. Water Resources Management, 18, 143-161.
    • (2004) Water Resources Management , vol.18 , pp. 143-161
    • Kumar, D.N.1    Raju, K.S.2    Sathish, T.3
  • 19
    • 7944228453 scopus 로고    scopus 로고
    • Modeling of CO distribution in Istanbul using artificial neural networks
    • Sahin, U., Ucan, O.N., Soyhan, B. and Bayat, C. (2004) Modeling of CO distribution in Istanbul using artificial neural networks. Fresenius Environmental Bulletin, 13 (9), 839-845.
    • (2004) Fresenius Environmental Bulletin , vol.13 , Issue.9 , pp. 839-845
    • Sahin, U.1    Ucan, O.N.2    Soyhan, B.3    Bayat, C.4
  • 20
    • 14844322189 scopus 로고    scopus 로고
    • Prediction of total monthly rainfall in Jordan using feed forward backpropagation method
    • Freiwan, M. and Cigizoglou, H.K. (2005) Prediction of total monthly rainfall in Jordan using feed forward backpropagation method. Fresenius Environmental Bulletin, 14 (2), 142-151.
    • (2005) Fresenius Environmental Bulletin , vol.14 , Issue.2 , pp. 142-151
    • Freiwan, M.1    Cigizoglou, H.K.2
  • 22
    • 34248158621 scopus 로고    scopus 로고
    • A neurofuzzy spatial decision support system for pipe replacement prioritization
    • Makropoulos, C.K. and Butler, D. (2005) A neurofuzzy spatial decision support system for pipe replacement prioritization. Urban Water Journal, 2 (3), 141-150.
    • (2005) Urban Water Journal , vol.2 , Issue.3 , pp. 141-150
    • Makropoulos, C.K.1    Butler, D.2
  • 29
    • 0000155950 scopus 로고
    • The cascade correlation learning architecture
    • D.S. Touretsky ed, San Mateo, CA, Morgan Kaufmann
    • Fahlman, S.E. and Lebiere, C. (1990) The cascade correlation learning architecture, in D.S. Touretsky (ed.), Advances in Neural Information Processing Systems 2, San Mateo, CA, Morgan Kaufmann, 524-532.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 31
    • 0003486924 scopus 로고
    • Academic Press, San Diego, CA
    • ++. Academic Press, San Diego, CA.
    • (1993) ++
    • Masters, T.1
  • 32
    • 0032584921 scopus 로고    scopus 로고
    • A recursive algorithm based on the extended Kalman filter for the training of feed forward neural models
    • Rivals, I. and Personnaz, L. (1998) A recursive algorithm based on the extended Kalman filter for the training of feed forward neural models. Neurocomputing, 20(1-3), 279-294.
    • (1998) Neurocomputing , vol.20 , Issue.1-3 , pp. 279-294
    • Rivals, I.1    Personnaz, L.2
  • 33
    • 38049067633 scopus 로고    scopus 로고
    • nd ed. New York: Wiley.
    • nd ed. New York: Wiley.
  • 34
    • 0003396255 scopus 로고    scopus 로고
    • Neural network toolbox. For use with Matlab®
    • Demuth, H. and Beale, M. (2001) Neural network toolbox. For use with Matlab®, User's Guide, V4.
    • (2001) User's Guide
    • Demuth, H.1    Beale, M.2
  • 36
    • 0011849212 scopus 로고
    • Convergence properties of cascade correlation in Function Approximation
    • Drago, G. P. and Ridella, S. (1994) Convergence properties of cascade correlation in Function Approximation. Neural Computing & Applications, 2, 142-147.
    • (1994) Neural Computing & Applications , vol.2 , pp. 142-147
    • Drago, G.P.1    Ridella, S.2
  • 37
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman, S., Bienenstock, E. and Doursat, R. (1992) Neural networks and the bias/variance dilemma. Neural Computing, 4, 1-58.
    • (1992) Neural Computing , vol.4 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 38
    • 22544487549 scopus 로고    scopus 로고
    • Artificial neural networks as an alternative tool in pine bark volume estimation
    • Diamantopoulou, M. (2005) Artificial neural networks as an alternative tool in pine bark volume estimation. Computer and Electronics in Agriculture, 48, 235-244.
    • (2005) Computer and Electronics in Agriculture , vol.48 , pp. 235-244
    • Diamantopoulou, M.1
  • 39
    • 33947709411 scopus 로고    scopus 로고
    • Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers
    • Diamantopoulou, M., Antonopoulos, V. and Papamichail, D. (2007) Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers. Water Resources Management, 21, 649-662.
    • (2007) Water Resources Management , vol.21 , pp. 649-662
    • Diamantopoulou, M.1    Antonopoulos, V.2    Papamichail, D.3
  • 41
    • 0026613414 scopus 로고
    • Multiple input-single output linear functional models for river flow routing
    • Papamichail, D.M. and Papazafiriou, Z.G. (1992) Multiple input-single output linear functional models for river flow routing. Journal of Hydrology, 133, 365-377.
    • (1992) Journal of Hydrology , vol.133 , pp. 365-377
    • Papamichail, D.M.1    Papazafiriou, Z.G.2
  • 42
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • Coulibaly, P., Anctil, F. and Bobee, B. (2001) Multivariate reservoir inflow forecasting using temporal neural networks. Journal of Hydrologic Engineering, 6(5), 367-376.
    • (2001) Journal of Hydrologic Engineering , vol.6 , Issue.5 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.