메뉴 건너뛰기




Volumn 121, Issue 3, 2011, Pages 441-449

Simulation for response of crop yield to soil moisture and salinity with artificial neural network

Author keywords

Artificial neural network; Soil salinity; Soil water; Sunflower yield

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CROP YIELD; GROWTH; IRRIGATION; MANAGEMENT PRACTICE; NUMERICAL MODEL; PHYSIOLOGICAL RESPONSE; REGRESSION ANALYSIS; SALINITY; SALT; SENSITIVITY ANALYSIS; SOIL MOISTURE; SOWING; YIELD RESPONSE;

EID: 79952696637     PISSN: 03784290     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fcr.2011.01.016     Document Type: Article
Times cited : (120)

References (38)
  • 1
    • 57849083889 scopus 로고    scopus 로고
    • Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach
    • Alvarez R. Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach. Eur. J. Agron. 2009, 30:70-77.
    • (2009) Eur. J. Agron. , vol.30 , pp. 70-77
    • Alvarez, R.1
  • 2
    • 75549092073 scopus 로고    scopus 로고
    • Effect of salinisation of soil on growth, water status and general nutrient accumulation in seedlings of Delonix regia (Fabaceae)
    • Ashish D.P., Hina B., Amar N.P. Effect of salinisation of soil on growth, water status and general nutrient accumulation in seedlings of Delonix regia (Fabaceae). Acta Ecol. Sin. 2009, 29:109-115.
    • (2009) Acta Ecol. Sin. , vol.29 , pp. 109-115
    • Ashish, D.P.1    Hina, B.2    Amar, N.P.3
  • 3
    • 0037017645 scopus 로고    scopus 로고
    • Response of safflower (Carthamus tinctorius L.) to saline soil and irrigation II. Crop response to salinity
    • Bassil E.S., Kaffka S.R. Response of safflower (Carthamus tinctorius L.) to saline soil and irrigation II. Crop response to salinity. Agric. Water Manage. 2002, 54:81-92.
    • (2002) Agric. Water Manage. , vol.54 , pp. 81-92
    • Bassil, E.S.1    Kaffka, S.R.2
  • 4
    • 0030935250 scopus 로고    scopus 로고
    • Development of a neural network for soybean rust epidemics
    • Batchelor W.D., Yang X.B., Tshanz A.T. Development of a neural network for soybean rust epidemics. Trans. ASAE 1997, 40:247-252.
    • (1997) Trans. ASAE , vol.40 , pp. 247-252
    • Batchelor, W.D.1    Yang, X.B.2    Tshanz, A.T.3
  • 5
    • 70349166720 scopus 로고    scopus 로고
    • Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.)
    • Chen M., Kang Y., Wan S., Liu S. Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.). Agric. Water Manage. 2009, 96:1766-1772.
    • (2009) Agric. Water Manage. , vol.96 , pp. 1766-1772
    • Chen, M.1    Kang, Y.2    Wan, S.3    Liu, S.4
  • 7
    • 61749090181 scopus 로고    scopus 로고
    • Artificial neural network models for estimating regional reference evapotranspiration based on climate factors
    • Dai X., Shi H., Li Y., Ouyang Z., Huo Z. Artificial neural network models for estimating regional reference evapotranspiration based on climate factors. Hydrol. Process. 2009, 23:442-450.
    • (2009) Hydrol. Process. , vol.23 , pp. 442-450
    • Dai, X.1    Shi, H.2    Li, Y.3    Ouyang, Z.4    Huo, Z.5
  • 9
    • 11144261445 scopus 로고    scopus 로고
    • Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China
    • Feng Z., Wang X., Feng Z. Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China. Agric. Water Manage. 2005, 71:131-143.
    • (2005) Agric. Water Manage. , vol.71 , pp. 131-143
    • Feng, Z.1    Wang, X.2    Feng, Z.3
  • 10
    • 4344599588 scopus 로고    scopus 로고
    • Effect of saline water on oil yield and quality of a high oleic sunflower (Helianthus annuus L.) hybrid
    • Flagella Z., Giuliani M.M., Rotunno T., Di Caterina R., De Caro A. Effect of saline water on oil yield and quality of a high oleic sunflower (Helianthus annuus L.) hybrid. Eur. J. Agron. 2004, 21:267-272.
    • (2004) Eur. J. Agron. , vol.21 , pp. 267-272
    • Flagella, Z.1    Giuliani, M.M.2    Rotunno, T.3    Di Caterina, R.4    De Caro, A.5
  • 11
    • 77955055956 scopus 로고    scopus 로고
    • A neural network experiment on the site-specific simulation of potato tuber growth in Eastern Canada
    • Fortin J.G., Anctil F., Parent L., Bolinder M.A. A neural network experiment on the site-specific simulation of potato tuber growth in Eastern Canada. Comput. Electron. Agric. 2010, 73:126-132.
    • (2010) Comput. Electron. Agric. , vol.73 , pp. 126-132
    • Fortin, J.G.1    Anctil, F.2    Parent, L.3    Bolinder, M.A.4
  • 13
    • 33947601468 scopus 로고    scopus 로고
    • Relating crop yield to topographic attributes using spatial analysis neural networks and regression
    • Green T.R., Salas J.D., Martinez A., Erskine R.H. Relating crop yield to topographic attributes using spatial analysis neural networks and regression. Geoderma 2007, 139:23-37.
    • (2007) Geoderma , vol.139 , pp. 23-37
    • Green, T.R.1    Salas, J.D.2    Martinez, A.3    Erskine, R.H.4
  • 14
    • 78049269881 scopus 로고    scopus 로고
    • A water-centred framework to assess the effects of salinity on the growth and yield of wheat and barley
    • Harris B.N., Sadras V.O., Tester M. A water-centred framework to assess the effects of salinity on the growth and yield of wheat and barley. Plant Soil 2010, 10 1007/s11101-010r-r0489-9.
    • (2010) Plant Soil
    • Harris, B.N.1    Sadras, V.O.2    Tester, M.3
  • 17
    • 46449089657 scopus 로고    scopus 로고
    • Models for estimating evapotranspiration using artificial neural network, and their physical interpretation
    • Jain S.K., Nayak P.C., Sudheer K.P. Models for estimating evapotranspiration using artificial neural network, and their physical interpretation. Hydrol. Process. 2008, 22:2225-2234.
    • (2008) Hydrol. Process. , vol.22 , pp. 2225-2234
    • Jain, S.K.1    Nayak, P.C.2    Sudheer, K.P.3
  • 18
    • 30344485683 scopus 로고    scopus 로고
    • Assessing the response of chickpea (Cicer aeritinum L.) yield to irrigation water on two soils in Punjab (India): a simulation analysis using the CROPMAN model
    • Jalota S.K., Sood A., Harman W.L. Assessing the response of chickpea (Cicer aeritinum L.) yield to irrigation water on two soils in Punjab (India): a simulation analysis using the CROPMAN model. Agric. Water Manage. 2006, 79(3):312-320.
    • (2006) Agric. Water Manage. , vol.79 , Issue.3 , pp. 312-320
    • Jalota, S.K.1    Sood, A.2    Harman, W.L.3
  • 19
    • 0030465703 scopus 로고    scopus 로고
    • Crop growth models for decision support systems
    • James Y.W., Cutforth H.W. Crop growth models for decision support systems. Can. J. Plant. 1996, 76:9-19.
    • (1996) Can. J. Plant. , vol.76 , pp. 9-19
    • James, Y.W.1    Cutforth, H.W.2
  • 20
    • 0038269314 scopus 로고    scopus 로고
    • Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods
    • Katerji N., van Hoorn J.W., Hamdy A., Mastrorilli M. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric. Water Manage. 2003, 62:37-66.
    • (2003) Agric. Water Manage. , vol.62 , pp. 37-66
    • Katerji, N.1    van Hoorn, J.W.2    Hamdy, A.3    Mastrorilli, M.4
  • 21
    • 19044373009 scopus 로고    scopus 로고
    • Artificial neural networks for corn and soybean yield prediction
    • Kaul M., Hill R.L., Walthall C. Artificial neural networks for corn and soybean yield prediction. Agric. Syst. 2005, 85:1-18.
    • (2005) Agric. Syst. , vol.85 , pp. 1-18
    • Kaul, M.1    Hill, R.L.2    Walthall, C.3
  • 22
    • 34247525561 scopus 로고    scopus 로고
    • An approach for determining relative input parameter importance and significance in artificial neural networks
    • Kemp S.J., Zaradic P., Hansen F. An approach for determining relative input parameter importance and significance in artificial neural networks. Ecol. Model. 2007, 204:326-334.
    • (2007) Ecol. Model. , vol.204 , pp. 326-334
    • Kemp, S.J.1    Zaradic, P.2    Hansen, F.3
  • 23
    • 47749091751 scopus 로고    scopus 로고
    • Yield estimation and clustering of chickpea genotypes using soft computing techniques
    • Khazaei J., Naghavi M.R., Jahansouz M.R., Salimi-Khorshidi G. Yield estimation and clustering of chickpea genotypes using soft computing techniques. Agron. J. 2008, 100:1077-1087.
    • (2008) Agron. J. , vol.100 , pp. 1077-1087
    • Khazaei, J.1    Naghavi, M.R.2    Jahansouz, M.R.3    Salimi-Khorshidi, G.4
  • 24
    • 28344432081 scopus 로고    scopus 로고
    • Water productivity under saline conditions
    • CAB International, J.W. Kijne, R. Barker, D. Molden (Eds.)
    • Kijne J.W. Water productivity under saline conditions. Water Productivity in Agriculture: Limits and Opportunities 2003, 89-102. CAB International. J.W. Kijne, R. Barker, D. Molden (Eds.).
    • (2003) Water Productivity in Agriculture: Limits and Opportunities , pp. 89-102
    • Kijne, J.W.1
  • 25
    • 62249130077 scopus 로고    scopus 로고
    • Simulation of artificial neural network model for trunk sap flow of Pyrus pyrifolia and its comparison with multiple-linear regression
    • Liu X., Kang S., Li F. Simulation of artificial neural network model for trunk sap flow of Pyrus pyrifolia and its comparison with multiple-linear regression. Agric. Water Manage. 2009, 96:939-945.
    • (2009) Agric. Water Manage. , vol.96 , pp. 939-945
    • Liu, X.1    Kang, S.2    Li, F.3
  • 27
    • 67249083384 scopus 로고    scopus 로고
    • Effects of estimating soil hydraulic properties and root growth factor on soil water balance and crop production
    • Ma L., Hoogenboom G., Saseendran S.A., Bartling P.N.S., Ahuja L.R., Green T.R. Effects of estimating soil hydraulic properties and root growth factor on soil water balance and crop production. Agron. J. 2009, 101(3):572-583.
    • (2009) Agron. J. , vol.101 , Issue.3 , pp. 572-583
    • Ma, L.1    Hoogenboom, G.2    Saseendran, S.A.3    Bartling, P.N.S.4    Ahuja, L.R.5    Green, T.R.6
  • 28
    • 19044369317 scopus 로고    scopus 로고
    • Crop management
    • CAB International, R. Matthews, W. Stephens (Eds.)
    • Matthews R. Crop management. Crop-soil Simulation Models 2002, 69-79. CAB International. R. Matthews, W. Stephens (Eds.).
    • (2002) Crop-soil Simulation Models , pp. 69-79
    • Matthews, R.1
  • 29
    • 19044374566 scopus 로고    scopus 로고
    • Regional and national planning
    • CAB International, R. Matthews, W. Stephens (Eds.)
    • Matthews R. Regional and national planning. Crop-soil Simulation Models 2002, 29-52. CAB International. R. Matthews, W. Stephens (Eds.).
    • (2002) Crop-soil Simulation Models , pp. 29-52
    • Matthews, R.1
  • 30
    • 0037295789 scopus 로고    scopus 로고
    • Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress
    • Meloni D.A., Oliva M.A., Martinez C.A., Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot. 2003, 49:69-76.
    • (2003) Environ. Exp. Bot. , vol.49 , pp. 69-76
    • Meloni, D.A.1    Oliva, M.A.2    Martinez, C.A.3    Cambraia, J.4
  • 31
    • 33744543012 scopus 로고    scopus 로고
    • Identifying important factors influencing corn yield and grain quality variability using artificial neural networks
    • Miao Y., Mulla D.J., Robert P.C. Identifying important factors influencing corn yield and grain quality variability using artificial neural networks. Precision Agric. 2006, 7(2):117-135.
    • (2006) Precision Agric. , vol.7 , Issue.2 , pp. 117-135
    • Miao, Y.1    Mulla, D.J.2    Robert, P.C.3
  • 32
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • Olden J.D., Joy M.K., Death R.G. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol. Model. 2004, 178:389-397.
    • (2004) Ecol. Model. , vol.178 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 33
    • 19044383581 scopus 로고    scopus 로고
    • Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions
    • Park S.J., Hwang C.S., Vlek P.L.G. Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions. Agric. Syst. 2005, 85:59-81.
    • (2005) Agric. Syst. , vol.85 , pp. 59-81
    • Park, S.J.1    Hwang, C.S.2    Vlek, P.L.G.3
  • 34
    • 0030470620 scopus 로고    scopus 로고
    • Crop modelling: from infancy to maturity
    • Sinclair T.R., Seligman N.A.G. Crop modelling: from infancy to maturity. Agron. J. 1996, 88:698-703.
    • (1996) Agron. J. , vol.88 , pp. 698-703
    • Sinclair, T.R.1    Seligman, N.A.G.2
  • 35
    • 39149117358 scopus 로고    scopus 로고
    • Soil water in relation to irrigation, water uptake and potato yield in a humid climate
    • Starr G.C., Rowland D., Griffin T.S., Olanya O.M. Soil water in relation to irrigation, water uptake and potato yield in a humid climate. Agric. Water Manage. 2008, 95(3):292-300.
    • (2008) Agric. Water Manage. , vol.95 , Issue.3 , pp. 292-300
    • Starr, G.C.1    Rowland, D.2    Griffin, T.S.3    Olanya, O.M.4
  • 36
    • 67650526169 scopus 로고    scopus 로고
    • Prediction of soybean growth and development using artificial neural network and statistical models
    • Zhang J.Q., Zhang L.X., Zhang M.H., Watson C. Prediction of soybean growth and development using artificial neural network and statistical models. Acta Agron. Sin. 2009, 35(2):341-347.
    • (2009) Acta Agron. Sin. , vol.35 , Issue.2 , pp. 341-347
    • Zhang, J.Q.1    Zhang, L.X.2    Zhang, M.H.3    Watson, C.4
  • 37
    • 0037210375 scopus 로고    scopus 로고
    • Model for simulation of winter wheat yield under dry land and irrigated conditions
    • Ziaei A.N., Sepaskhah A.R. Model for simulation of winter wheat yield under dry land and irrigated conditions. Agric. Water Manage. 2003, 58:1-17.
    • (2003) Agric. Water Manage. , vol.58 , pp. 1-17
    • Ziaei, A.N.1    Sepaskhah, A.R.2
  • 38
    • 77957895417 scopus 로고    scopus 로고
    • Artificial neural network and time series models for predicting soil salt and water content
    • Zou P., Yang J., Fu J., Liu G., Li D. Artificial neural network and time series models for predicting soil salt and water content. Agric. Water Manage. 2010, 10.1016/j.agwat.2010.02.011.
    • (2010) Agric. Water Manage.
    • Zou, P.1    Yang, J.2    Fu, J.3    Liu, G.4    Li, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.