메뉴 건너뛰기




Volumn 27, Issue , 2012, Pages 465-474

A fuzzy intelligent approach to the classification problem in gene expression data analysis

Author keywords

Artificial neural networks (ANNs); Classification; Discriminant analysis (DA); Fuzzy logic; Gene expression; K nearest neighbor (KNN); Pattern recognition; Support vector machines (SVMs)

Indexed keywords

CLASSIFICATION ACCURACY; CLASSIFICATION POWER; CLASSIFICATION TECHNIQUE; COMPLEX PROBLEMS; DATA MINING TASKS; DATA SETS; EMPIRICAL RESULTS; FUZZY PARAMETER; GENE EXPRESSION CLASSIFICATION; GENE EXPRESSION DATA; GENE EXPRESSION DATA ANALYSIS; GENE EXPRESSION PATTERNS; HIGH DIMENSIONS; HYBRID CLASSIFIER; HYBRID MODEL; INCOMPLETE DATA; INTELLIGENT CLASSIFICATION; K-NEAREST NEIGHBOR (KNN); K-NEAREST NEIGHBORS; LINEAR DISCRIMINANT ANALYSIS; MICROARRAY ANALYSIS; QUADRATIC DISCRIMINANT ANALYSIS; REAL-WORLD APPLICATION; SMALL SAMPLES; SOFT COMPUTING TOOLS; SUPPORT VECTOR; TRAINING PROCESS; TRAINING SAMPLE;

EID: 84855918144     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2011.10.012     Document Type: Article
Times cited : (50)

References (77)
  • 1
    • 57749192475 scopus 로고    scopus 로고
    • Finding rule groups to classify high dimensional gene expression datasets
    • J. An, and Y. Chen Finding rule groups to classify high dimensional gene expression datasets Comput. Biol. Chem. 33 2009 108 113
    • (2009) Comput. Biol. Chem. , vol.33 , pp. 108-113
    • An, J.1    Chen, Y.2
  • 2
    • 77950860709 scopus 로고    scopus 로고
    • Bayesian classification for bivariate normal gene expression
    • S. Ramos, A. Turkman, and M. Antunes Bayesian classification for bivariate normal gene expression Comput. Stat. Data Anal. 54 2010 2012 2020
    • (2010) Comput. Stat. Data Anal. , vol.54 , pp. 2012-2020
    • Ramos, S.1    Turkman, A.2    Antunes, M.3
  • 3
    • 37849021093 scopus 로고    scopus 로고
    • Constructing the gene regulation-level representation of microarray data for cancer classification
    • H. Wong, and H. Wang Constructing the gene regulation-level representation of microarray data for cancer classification J. Biomed. Inform. 41 2008 95 105
    • (2008) J. Biomed. Inform. , vol.41 , pp. 95-105
    • Wong, H.1    Wang, H.2
  • 5
    • 0038561723 scopus 로고    scopus 로고
    • Supervised neural networks for clustering conditions in DNA array data after reducing noise by clustering gene expression profiles
    • Duke University Med CTR, Durham
    • A. Mateos, J. Herrero, J. Tamames, J. Dopazo, Supervised neural networks for clustering conditions in DNA array data after reducing noise by clustering gene expression profiles, in: Second Critical Assessment of Microarray Data Analysis (CAMDA 01), Duke University Med CTR, Durham, 2001, pp. 91-103.
    • (2001) Second Critical Assessment of Microarray Data Analysis (CAMDA 01) , pp. 91-103
    • Mateos, A.1    Herrero, J.2    Tamames, J.3    Dopazo, J.4
  • 6
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand, and T. Speed Comparison of discrimination methods for the classification of tumors using gene expression data J. Am. Stat. Assoc. 97 2002 77 87
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 7
    • 0035664710 scopus 로고    scopus 로고
    • Gene assessment and sample classification for gene expression data using a genetic algorithm/k-nearest neighbor method
    • L. Li, T.A. Darden, C.R. Weinberg, A.J. Levine, and L.G. Pedersen Gene assessment and sample classification for gene expression data using a genetic algorithm/k-nearest neighbor method Comb. Chem. High Throughput Screening 4 2001 727 739
    • (2001) Comb. Chem. High Throughput Screening , vol.4 , pp. 727-739
    • Li, L.1    Darden, T.A.2    Weinberg, C.R.3    Levine, A.J.4    Pedersen, L.G.5
  • 9
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • A.C. Tan, and D. Gilbert Ensemble machine learning on gene expression data for cancer classification Appl. Bioinfor. 2 2003 S75 S83
    • (2003) Appl. Bioinfor. , vol.2
    • Tan, A.C.1    Gilbert, D.2
  • 10
    • 78649709873 scopus 로고    scopus 로고
    • Bayesian semi-supervised learning with support vector machine
    • S. Chakraborty Bayesian semi-supervised learning with support vector machine Stat. Methodology 8 1 2011 68 82
    • (2011) Stat. Methodology , vol.8 , Issue.1 , pp. 68-82
    • Chakraborty, S.1
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machine
    • I. Guyon, J. Weston, S.M.D. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machine Mach. Learn. 46 2002 389 422
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.M.D.3    Vapnik, V.4
  • 12
    • 34548379115 scopus 로고    scopus 로고
    • ESVM: Evolutionary support vector machine for automatic feature selection and classification of microarray data
    • H.L. Huang, and F.L. Chang ESVM: evolutionary support vector machine for automatic feature selection and classification of microarray data BioSystems 90 2007 516 528
    • (2007) BioSystems , vol.90 , pp. 516-528
    • Huang, H.L.1    Chang, F.L.2
  • 13
    • 61349193268 scopus 로고    scopus 로고
    • Ensemble of support vector machines to improve the cancer class prediction based on the gene expression profiles
    • University of Salamanca, Salamanca, Spain
    • A. Blanco, M. Martn-Merino, J.D.L. Rivas, Ensemble of support vector machines to improve the cancer class prediction based on the gene expression profiles, in: Second International Workshop on Hybrid Artificial Intelligence Systems, University of Salamanca, Salamanca, Spain, vol. 44, 2007, pp. 393-400.
    • (2007) Second International Workshop on Hybrid Artificial Intelligence Systems , vol.44 , pp. 393-400
    • Blanco, A.1    Martn-Merino, M.2    Rivas, J.D.L.3
  • 14
    • 77952541011 scopus 로고    scopus 로고
    • Forest classification trees and forest support vector machines algorithms: Demonstration using microarray data
    • E. Zintzaras, and A. Kowald Forest classification trees and forest support vector machines algorithms: demonstration using microarray data Comput. Biol. Med. 40 2010 519 524
    • (2010) Comput. Biol. Med. , vol.40 , pp. 519-524
    • Zintzaras, E.1    Kowald, A.2
  • 15
    • 77649237177 scopus 로고    scopus 로고
    • Tumor classification by combining PNN classifier ensemble with neighborhood rough set based gene reduction
    • S. Wang, X. Li, S. Zhang, J. Gui, and D. Huang Tumor classification by combining PNN classifier ensemble with neighborhood rough set based gene reduction Comput. Biol. Med. 40 2010 179 189
    • (2010) Comput. Biol. Med. , vol.40 , pp. 179-189
    • Wang, S.1    Li, X.2    Zhang, S.3    Gui, J.4    Huang, D.5
  • 18
    • 29444440889 scopus 로고    scopus 로고
    • Tumor tissue identification based on gene expression data using DWT feature extraction and PNN classifier
    • G.M. Sun, X.Y. Dong, and G.D. Xu Tumor tissue identification based on gene expression data using DWT feature extraction and PNN classifier Neuro-computing 69 2006 387 402
    • (2006) Neuro-computing , vol.69 , pp. 387-402
    • Sun, G.M.1    Dong, X.Y.2    Xu, G.D.3
  • 19
    • 0041334207 scopus 로고    scopus 로고
    • Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection
    • P. Antal, G. Fannes, D. Timmerman, Y. Moreau, and B.D. Moor Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection Artif. Intell. Med. 29 2003 39 60
    • (2003) Artif. Intell. Med. , vol.29 , pp. 39-60
    • Antal, P.1    Fannes, G.2    Timmerman, D.3    Moreau, Y.4    Moor, B.D.5
  • 22
    • 50049112106 scopus 로고    scopus 로고
    • CARSVM: A class association rule-based classification framework and its application to gene expression data
    • K. Kianmehr, and R. Alhajj CARSVM: a class association rule-based classification framework and its application to gene expression data Artif. Intell. Med. 44 2008 7 25
    • (2008) Artif. Intell. Med. , vol.44 , pp. 7-25
    • Kianmehr, K.1    Alhajj, R.2
  • 23
    • 0242559063 scopus 로고    scopus 로고
    • Linear regression and two-class classification with gene expression data
    • X. Huang, and W. Pan Linear regression and two-class classification with gene expression data Bioinformatics 19 2003 2072 2978
    • (2003) Bioinformatics , vol.19 , pp. 2072-2978
    • Huang, X.1    Pan, W.2
  • 24
    • 34547691339 scopus 로고    scopus 로고
    • Extracting gene regulation information for cancer classification
    • H. Wang, H. Wong, D. Huang, and J. Shu Extracting gene regulation information for cancer classification Pattern Recogn. 40 2007 3379 3392
    • (2007) Pattern Recogn. , vol.40 , pp. 3379-3392
    • Wang, H.1    Wong, H.2    Huang, D.3    Shu, J.4
  • 25
    • 2642537531 scopus 로고    scopus 로고
    • On partial least squares dimension reduction for microarray-based classification: A simulation study
    • D. Nguyen, and D. Rocke On partial least squares dimension reduction for microarray-based classification: a simulation study Comput. Stat. Data Anal. 46 2004 407 425
    • (2004) Comput. Stat. Data Anal. , vol.46 , pp. 407-425
    • Nguyen, D.1    Rocke, D.2
  • 26
    • 60349130439 scopus 로고    scopus 로고
    • Selecting marker genes for cancer classification using supervised weighted kernel clustering and the support vector machine
    • J. Shim, I. Sohn, S. Kim, J.W. Lee, P.E. Green, and C. Hwang Selecting marker genes for cancer classification using supervised weighted kernel clustering and the support vector machine Comput. Stat. Data Anal. 53 5 2009 1736 1742
    • (2009) Comput. Stat. Data Anal. , vol.53 , Issue.5 , pp. 1736-1742
    • Shim, J.1    Sohn, I.2    Kim, S.3    Lee, J.W.4    Green, P.E.5    Hwang, C.6
  • 27
    • 33646383088 scopus 로고    scopus 로고
    • Dimension reduction for classification with gene expression microarray data
    • J. Dai, L. Lieu, and D. Rocke Dimension reduction for classification with gene expression microarray data Stat. Appl. Genet. Mol. Biol. 5 1 2006
    • (2006) Stat. Appl. Genet. Mol. Biol. , vol.5 , Issue.1
    • Dai, J.1    Lieu, L.2    Rocke, D.3
  • 28
    • 60049087512 scopus 로고    scopus 로고
    • New gene selection method for multiclass tumor classification by class centroid
    • Q. Shen, W. Shi, and W. Kong New gene selection method for multiclass tumor classification by class centroid J. Biomed. Inform. 42 2009 59 65
    • (2009) J. Biomed. Inform. , vol.42 , pp. 59-65
    • Shen, Q.1    Shi, W.2    Kong, W.3
  • 29
    • 33746924562 scopus 로고    scopus 로고
    • The effect of principal component analysis on machine learning accuracy with high-dimensional spectral data
    • T. Howley, M.G. Madden, M. O'Connell, and A.G. Ryder The effect of principal component analysis on machine learning accuracy with high-dimensional spectral data Knowl.-Based Syst. 19 2006 363 370
    • (2006) Knowl.-Based Syst. , vol.19 , pp. 363-370
    • Howley, T.1    Madden, M.G.2    O'Connell, M.3    Ryder, A.G.4
  • 30
    • 67650938835 scopus 로고    scopus 로고
    • Multi-class cancer classification through gene expression profiles: MicroRNA versus mRNA
    • S. Peng, X. Zeng, X. Li, X. Peng, and L. Chen Multi-class cancer classification through gene expression profiles: microRNA versus mRNA J. Genet. Genomics 36 2009 409 416
    • (2009) J. Genet. Genomics , vol.36 , pp. 409-416
    • Peng, S.1    Zeng, X.2    Li, X.3    Peng, X.4    Chen, L.5
  • 31
    • 39049162430 scopus 로고    scopus 로고
    • A new hybrid artificial neural networks and fuzzy regression model for time series forecasting
    • M. Khashei, S.R. Hejazi, and M. Bijari A new hybrid artificial neural networks and fuzzy regression model for time series forecasting Fuzzy Sets Syst. 159 2008 769 786
    • (2008) Fuzzy Sets Syst. , vol.159 , pp. 769-786
    • Khashei, M.1    Hejazi, S.R.2    Bijari, M.3
  • 32
    • 77958150424 scopus 로고    scopus 로고
    • An adaptive classification system for video-based face recognition
    • J. Connolly, E. Granger, R. Sabourin, An adaptive classification system for video-based face recognition, Information Sciences xxx, xxx-xxx 2010
    • (2010) Information Sciences , vol.30 , pp. 30
    • Connolly, J.1    Granger, E.2    Sabourin, R.3
  • 33
    • 0033722932 scopus 로고    scopus 로고
    • A hybrid genetic fuzzy neural network algorithm designed for classification problems involving several groups
    • R. Ostermark A hybrid genetic fuzzy neural network algorithm designed for classification problems involving several groups Fuzzy Sets Syst. 114 2000 311 324
    • (2000) Fuzzy Sets Syst. , vol.114 , pp. 311-324
    • Ostermark, R.1
  • 34
    • 77955415855 scopus 로고    scopus 로고
    • A novel hybrid feature selection via Symmetrical Uncertainty ranking based local memetic search algorithm
    • S. Kannan, and N. Ramaraj A novel hybrid feature selection via Symmetrical Uncertainty ranking based local memetic search algorithm Knowl.-Based Syst. 23 2010 580 585
    • (2010) Knowl.-Based Syst. , vol.23 , pp. 580-585
    • Kannan, S.1    Ramaraj, N.2
  • 35
    • 67649403094 scopus 로고    scopus 로고
    • Towards improving fuzzy clustering using support vector machine: Application to gene expression data
    • A. Mukhopadhyay, and U. Maulik Towards improving fuzzy clustering using support vector machine: application to gene expression data Pattern Recogn. 42 2009 2744 2763
    • (2009) Pattern Recogn. , vol.42 , pp. 2744-2763
    • Mukhopadhyay, A.1    Maulik, U.2
  • 36
    • 33748787668 scopus 로고    scopus 로고
    • Identification of critical genes in microarray experiments by a Neuro-Fuzzy approach
    • C. Chen, X. Feng, and J. Szeto Identification of critical genes in microarray experiments by a Neuro-Fuzzy approach Comput. Biol. Chem. 30 2006 372 381
    • (2006) Comput. Biol. Chem. , vol.30 , pp. 372-381
    • Chen, C.1    Feng, X.2    Szeto, J.3
  • 37
    • 11144351004 scopus 로고    scopus 로고
    • GenSo-FDSS: A neural-fuzzy decision support system for pediatric ALL cancer subtype identification using gene expression data
    • W.L. Tung, and C. Quek GenSo-FDSS: a neural-fuzzy decision support system for pediatric ALL cancer subtype identification using gene expression data Artif. Intell. Med. 33 2005 61 88
    • (2005) Artif. Intell. Med. , vol.33 , pp. 61-88
    • Tung, W.L.1    Quek, C.2
  • 38
    • 70350572773 scopus 로고    scopus 로고
    • Interval based fuzzy systems for identification of important genes from microarray gene expression data: Application to carcinogenic development
    • R. De, and A. Ghosh Interval based fuzzy systems for identification of important genes from microarray gene expression data: application to carcinogenic development J. Biomed. Inform. 42 2009 1022 1028
    • (2009) J. Biomed. Inform. , vol.42 , pp. 1022-1028
    • De, R.1    Ghosh, A.2
  • 39
    • 26444564627 scopus 로고    scopus 로고
    • Neuro-fuzzy network for the classification of buried pipe defects
    • S.K. Sinha, and P.W. Fieguth Neuro-fuzzy network for the classification of buried pipe defects Automat. Const. 15 2006 73 83
    • (2006) Automat. Const. , vol.15 , pp. 73-83
    • Sinha, S.K.1    Fieguth, P.W.2
  • 40
    • 73449097843 scopus 로고    scopus 로고
    • Simulated annealing based automatic fuzzy clustering combined with ANN classification for analyzing microarray data
    • U. Maulik, and A. Mukhopadhyay Simulated annealing based automatic fuzzy clustering combined with ANN classification for analyzing microarray data Comput. Oper. Res. 37 2010 1369 1380
    • (2010) Comput. Oper. Res. , vol.37 , pp. 1369-1380
    • Maulik, U.1    Mukhopadhyay, A.2
  • 41
    • 55049113337 scopus 로고    scopus 로고
    • CSMC: A combination strategy for multi-class classification based on multiple association rules
    • Y. Liu, Y. Jiang, X. Liu, and S. Yang CSMC: a combination strategy for multi-class classification based on multiple association rules Knowl.-Based Syst. 21 2008 786 793
    • (2008) Knowl.-Based Syst. , vol.21 , pp. 786-793
    • Liu, Y.1    Jiang, Y.2    Liu, X.3    Yang, S.4
  • 42
    • 58349091028 scopus 로고    scopus 로고
    • A novel approach for classification of ECG arrhythmias: Type-2 fuzzy clustering neural network
    • R. Ceylan, Y. Özbay, and B. Karlik A novel approach for classification of ECG arrhythmias: type-2 fuzzy clustering neural network Expert Syst. Appl. 36 2009 6721 6726
    • (2009) Expert Syst. Appl. , vol.36 , pp. 6721-6726
    • Ceylan, R.1    Özbay, Y.2    Karlik, B.3
  • 43
    • 58249086998 scopus 로고    scopus 로고
    • A novel approach to neuro-fuzzy classification
    • A. Ghosh, B. Uma Shankar, and S.K. Meher A novel approach to neuro-fuzzy classification Neural Networks 22 2009 100 109
    • (2009) Neural Networks , vol.22 , pp. 100-109
    • Ghosh, A.1    Uma Shankar, B.2    Meher, S.K.3
  • 44
    • 0016459349 scopus 로고
    • The concept of a linguistic variable and its application to approximate reasoning i
    • L.A. Zadeh The concept of a linguistic variable and its application to approximate reasoning I Inf. Sci. 8 1975 199 249
    • (1975) Inf. Sci. , vol.8 , pp. 199-249
    • Zadeh, L.A.1
  • 45
    • 0016459349 scopus 로고
    • The concept of a linguistic variable and its application to approximate reasoning II
    • L.A. Zadeh The concept of a linguistic variable and its application to approximate reasoning II Inf. Sci. 8 1975 301 357
    • (1975) Inf. Sci. , vol.8 , pp. 301-357
    • Zadeh, L.A.1
  • 46
    • 0016631726 scopus 로고
    • The concept of a linguistic variable and its application to approximate reasoning III
    • L.A. Zadeh The concept of a linguistic variable and its application to approximate reasoning III Inf. Sci. 9 1976 43 80
    • (1976) Inf. Sci. , vol.9 , pp. 43-80
    • Zadeh, L.A.1
  • 47
    • 67349173600 scopus 로고    scopus 로고
    • Non-uniform attractor embedding for time series forecasting by fuzzy inference systems
    • M. Ragulskis, and K. Lukoseviciute Non-uniform attractor embedding for time series forecasting by fuzzy inference systems Neurocomputing 72 2009 2618 2626
    • (2009) Neurocomputing , vol.72 , pp. 2618-2626
    • Ragulskis, M.1    Lukoseviciute, K.2
  • 48
    • 38249035267 scopus 로고
    • Fuzzy data analysis by possibility linear models
    • H. Tanaka Fuzzy data analysis by possibility linear models Fuzzy Sets Syst. 24 3 1987 363 375
    • (1987) Fuzzy Sets Syst. , vol.24 , Issue.3 , pp. 363-375
    • Tanaka, H.1
  • 49
    • 0002214570 scopus 로고
    • Possibility Regression Analysis Based on Linear Programming
    • J. Kacprzyk, M. Fedrizzi, Omnitech Press, Warsaw and Physica Heidelberg
    • H. Tanaka, and H. Ishibuchi Possibility Regression Analysis Based on Linear Programming J. Kacprzyk, M. Fedrizzi, Fuzzy Regression Analysis 1992 Omnitech Press, Warsaw and Physica Heidelberg 47 60
    • (1992) Fuzzy Regression Analysis , pp. 47-60
    • Tanaka, H.1    Ishibuchi, H.2
  • 51
    • 0013385773 scopus 로고
    • Fuzzy Time Series Analysis and Forecasting of Sales Volume
    • J. Kacprzyk, M. Fedrizzi, Omnitech Press, Warsaw and Physica-Verlag Heidelberg
    • J. Watada Fuzzy Time Series Analysis and Forecasting of Sales Volume J. Kacprzyk, M. Fedrizzi, Fuzzy Regression Analysis 1992 Omnitech Press, Warsaw and Physica-Verlag Heidelberg 211 277
    • (1992) Fuzzy Regression Analysis , pp. 211-277
    • Watada, J.1
  • 52
    • 38149147511 scopus 로고
    • Forecasting enrollments with fuzzy time series - (part I)
    • Q. Song, and B.S. Chissom Forecasting enrollments with fuzzy time series - (part I) Fuzzy Sets Syst. 54 1 1993 1 9
    • (1993) Fuzzy Sets Syst. , vol.54 , Issue.1 , pp. 1-9
    • Song, Q.1    Chissom, B.S.2
  • 53
    • 38149146997 scopus 로고
    • Forecasting enrollments with fuzzy time series - (part II)
    • Q. Song, and B.S. Chissom Forecasting enrollments with fuzzy time series - (part II) Fuzzy Sets Syst. 62 1 1994 1 8
    • (1994) Fuzzy Sets Syst. , vol.62 , Issue.1 , pp. 1-8
    • Song, Q.1    Chissom, B.S.2
  • 54
    • 33846884998 scopus 로고    scopus 로고
    • Evolving fuzzy rules to model gene expression
    • R. Linden, and A. Bhaya Evolving fuzzy rules to model gene expression Biosystems 88 2007 76 91
    • (2007) Biosystems , vol.88 , pp. 76-91
    • Linden, R.1    Bhaya, A.2
  • 55
    • 0034729586 scopus 로고    scopus 로고
    • A fuzzy logic approach to analyzing gene expression data
    • P.J. Woolf, and Y. Wang A fuzzy logic approach to analyzing gene expression data Physiol. Genomics 3 2000 9 15
    • (2000) Physiol. Genomics , vol.3 , pp. 9-15
    • Woolf, P.J.1    Wang, Y.2
  • 56
    • 61749092633 scopus 로고    scopus 로고
    • Fuzzy logic and related methods as a screening tool for detecting gene regulatory networks
    • G. Brock, W. Beavis, and L. Kubatko Fuzzy logic and related methods as a screening tool for detecting gene regulatory networks Inform. Fusion 10 2009 250 259
    • (2009) Inform. Fusion , vol.10 , pp. 250-259
    • Brock, G.1    Beavis, W.2    Kubatko, L.3
  • 57
    • 80052719284 scopus 로고    scopus 로고
    • A semi-supervised fuzzy clustering algorithm applied to gene expression data
    • I. Maraziotis A semi-supervised fuzzy clustering algorithm applied to gene expression data Pattern Recogn. 45 2012 637 648
    • (2012) Pattern Recogn. , vol.45 , pp. 637-648
    • Maraziotis, I.1
  • 58
    • 61749100669 scopus 로고    scopus 로고
    • Linguistic recognition system for identification of some possible genes mediating the development of lung adenocarcinoma
    • R. De, and A. Ghosh Linguistic recognition system for identification of some possible genes mediating the development of lung adenocarcinoma Inform. Fusion 10 2009 260 269
    • (2009) Inform. Fusion , vol.10 , pp. 260-269
    • De, R.1    Ghosh, A.2
  • 59
    • 61449214257 scopus 로고    scopus 로고
    • Fuzzy ensemble clustering based on random projections for DNA microarray data analysis
    • R. Avogadri, and G. Valentini Fuzzy ensemble clustering based on random projections for DNA microarray data analysis Artif. Intell. Med. 45 2009 173 183
    • (2009) Artif. Intell. Med. , vol.45 , pp. 173-183
    • Avogadri, R.1    Valentini, G.2
  • 61
    • 0035400740 scopus 로고    scopus 로고
    • Fuzzy convex set-based pattern classification for analysis of mammographic micro calcifications
    • W. Grohman, and A. Dhawan Fuzzy convex set-based pattern classification for analysis of mammographic micro calcifications Pattern Recogn. 34 2001 1469 1482
    • (2001) Pattern Recogn. , vol.34 , pp. 1469-1482
    • Grohman, W.1    Dhawan, A.2
  • 62
    • 36148983081 scopus 로고    scopus 로고
    • Classification method using fuzzy level set subgrouping
    • P. Kukkurainen, and P. Luukka Classification method using fuzzy level set subgrouping Expert Syst. Appl. 34 2008 859 865
    • (2008) Expert Syst. Appl. , vol.34 , pp. 859-865
    • Kukkurainen, P.1    Luukka, P.2
  • 63
    • 34249697035 scopus 로고    scopus 로고
    • An entropy-based quantum neuro-fuzzy inference system for classification applications
    • C. Lin, I-F. Chung, and C. Chen An entropy-based quantum neuro-fuzzy inference system for classification applications Neurocomputing 70 2007 2502 2516
    • (2007) Neurocomputing , vol.70 , pp. 2502-2516
    • Lin, C.1    Chung, I.-F.2    Chen, C.3
  • 64
    • 70349453596 scopus 로고    scopus 로고
    • An artificial neural network (p.d.q) model for time series forecasting
    • M. Khashei, and M. Bijari An artificial neural network (p.d.q) model for time series forecasting Expert Syst. Appl. 37 2010 479 489
    • (2010) Expert Syst. Appl. , vol.37 , pp. 479-489
    • Khashei, M.1    Bijari, M.2
  • 65
    • 58149468814 scopus 로고    scopus 로고
    • Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs)
    • M. Khashei, M. Bijari, and GH A. Raissi Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs) Neurocomputing 72 2009 956 967
    • (2009) Neurocomputing , vol.72 , pp. 956-967
    • Khashei, M.1    Bijari, M.2    Raissi, G.H.A.3
  • 66
    • 33747067136 scopus 로고    scopus 로고
    • Interpretable gene expression classifier with an accurate and compact fuzzy rule base for microarray data analysis
    • S. Ho, C. Hsieh, H. Chen, and H. Huang Interpretable gene expression classifier with an accurate and compact fuzzy rule base for microarray data analysis Biosystems 85 2006 165 176
    • (2006) Biosystems , vol.85 , pp. 165-176
    • Ho, S.1    Hsieh, C.2    Chen, H.3    Huang, H.4
  • 67
    • 0008315304 scopus 로고
    • Interval regression analysis based on mixed 0-1 integer programming problem
    • H. Ishibuchi, and H. Tanaka Interval regression analysis based on mixed 0-1 integer programming problem J. Japan Soc. Ind. Eng. 40 5 1988 312 319
    • (1988) J. Japan Soc. Ind. Eng. , vol.40 , Issue.5 , pp. 312-319
    • Ishibuchi, H.1    Tanaka, H.2
  • 68
    • 34548126507 scopus 로고    scopus 로고
    • Data-driven decomposition for multi-class classification
    • J. Zhou, H. Peng, and C. Suen Data-driven decomposition for multi-class classification Pattern Recogn. 41 2008 67 76
    • (2008) Pattern Recogn. , vol.41 , pp. 67-76
    • Zhou, J.1    Peng, H.2    Suen, C.3
  • 69
  • 70
    • 34548215072 scopus 로고    scopus 로고
    • Consensual and hierarchical classification of remotely sensed multispectral images
    • J. Lee, and O. Ersoy Consensual and hierarchical classification of remotely sensed multispectral images IEEE Trans. Geosci. Remote Sensing 45 9 2007 2953 2963
    • (2007) IEEE Trans. Geosci. Remote Sensing , vol.45 , Issue.9 , pp. 2953-2963
    • Lee, J.1    Ersoy, O.2
  • 71
    • 0242695742 scopus 로고    scopus 로고
    • DSP-based hierarchical neural network modulation signal classification
    • N. Kim, N. Kehtarnavaz, M. Yeary, and S. Thornton DSP-based hierarchical neural network modulation signal classification IEEE Trans. Neural Networks 14 5 2003 1065 1071
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.5 , pp. 1065-1071
    • Kim, N.1    Kehtarnavaz, N.2    Yeary, M.3    Thornton, S.4
  • 72
    • 0030269785 scopus 로고    scopus 로고
    • Fuzzy HMC classifiers
    • W. Porter, and W. Liu Fuzzy HMC classifiers Inf. Sci. 94 1996 151 178
    • (1996) Inf. Sci. , vol.94 , pp. 151-178
    • Porter, W.1    Liu, W.2
  • 73
    • 80052027978 scopus 로고    scopus 로고
    • Improvement of new automatic differential fuzzy clustering using SVM classifier for microarray analysis
    • I. Saha, U. Maulik, S. Bandyopadhyay, and D. Plewczynski Improvement of new automatic differential fuzzy clustering using SVM classifier for microarray analysis Expert Syst. Appl. 38 2011 15122 15133
    • (2011) Expert Syst. Appl. , vol.38 , pp. 15122-15133
    • Saha, I.1    Maulik, U.2    Bandyopadhyay, S.3    Plewczynski, D.4
  • 74
    • 38049053725 scopus 로고    scopus 로고
    • Temporal gene expression classification with regularised neural network
    • Y. Liang, and A. Keleman Temporal gene expression classification with regularised neural network Int. J. Bioinf. Res. Appl. 14 2005 399 413
    • (2005) Int. J. Bioinf. Res. Appl. , vol.14 , pp. 399-413
    • Liang, Y.1    Keleman, A.2
  • 75
    • 0032561246 scopus 로고    scopus 로고
    • The transcriptional program of sporulation in budding yeast
    • S. Chu The transcriptional program of sporulation in budding yeast Science 282 1998 699 705
    • (1998) Science , vol.282 , pp. 699-705
    • Chu, S.1
  • 76
    • 79956070450 scopus 로고    scopus 로고
    • Analysis of gene microarray data in a soft computing framework
    • U. Maulik Analysis of gene microarray data in a soft computing framework Appl. Soft Comput. 11 2011 4152 4160
    • (2011) Appl. Soft Comput. , vol.11 , pp. 4152-4160
    • Maulik, U.1
  • 77
    • 78751608738 scopus 로고    scopus 로고
    • A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
    • M. Khashei, and M. Bijari A novel hybridization of artificial neural networks and ARIMA models for time series forecasting Appl. Soft Comput. 11 2011 2664 2675
    • (2011) Appl. Soft Comput. , vol.11 , pp. 2664-2675
    • Khashei, M.1    Bijari, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.