메뉴 건너뛰기




Volumn 42, Issue 11, 2009, Pages 2744-2763

Towards improving fuzzy clustering using support vector machine: Application to gene expression data

Author keywords

Cluster validity indices; Fuzzy clustering; Gene ontology; Microarray gene expression data; Support vector machines; Variable string length genetic algorithm

Indexed keywords

BIOLOGICAL SIGNIFICANCE; CLUSTER VALIDITY INDICES; CLUSTERING SCHEME; CLUSTERING SOLUTIONS; CLUSTERING TECHNIQUES; COMPUTATIONAL ANALYSIS; DATA-MINING TOOLS; EXPRESSION LEVELS; FUZZY C MEANS CLUSTERING; GENE EXPRESSION DATA; GENE ONTOLOGY; MICROARRAY DATA; MICROARRAY GENE EXPRESSION DATA; MICROARRAY TECHNOLOGIES; MULTIPLE COMPARISON TEST; POSTERIORI; REAL-CODED; STATISTICAL SIGNIFICANCE; STATISTICAL SIGNIFICANCE TEST; TIME POINTS; VARIABLE STRING LENGTH; VARIABLE STRING LENGTH GENETIC ALGORITHM;

EID: 67649403094     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2009.04.018     Document Type: Article
Times cited : (51)

References (46)
  • 1
    • 0141506116 scopus 로고    scopus 로고
    • CLICK and EXPANDER: a system for clustering and visualizing gene expression data
    • Sharan R., Adi M.-K., and Shamir R. CLICK and EXPANDER: a system for clustering and visualizing gene expression data. Bioinformatics 19 (2003) 1787-1799
    • (2003) Bioinformatics , vol.19 , pp. 1787-1799
    • Sharan, R.1    Adi, M.-K.2    Shamir, R.3
  • 10
    • 17944394324 scopus 로고    scopus 로고
    • Fuzzy c-means method for clustering microarray data
    • Dembele D., and Kastner P. Fuzzy c-means method for clustering microarray data. Bioinformatics 19 8 (2003) 973-980
    • (2003) Bioinformatics , vol.19 , Issue.8 , pp. 973-980
    • Dembele, D.1    Kastner, P.2
  • 13
    • 0035014159 scopus 로고    scopus 로고
    • Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters
    • Lukashin A.V., and Fuchs R. Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters. Bioinformatics 17 5 (2001) 405-414
    • (2001) Bioinformatics , vol.17 , Issue.5 , pp. 405-414
    • Lukashin, A.V.1    Fuchs, R.2
  • 14
    • 36448965202 scopus 로고    scopus 로고
    • An improved algorithm for clustering gene expression data
    • Bandyopadhyay S., Mukhopadhyay A., and Maulik U. An improved algorithm for clustering gene expression data. Bioinformatics 23 21 (2007) 2859-2865
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2859-2865
    • Bandyopadhyay, S.1    Mukhopadhyay, A.2    Maulik, U.3
  • 15
    • 62949240361 scopus 로고    scopus 로고
    • Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes
    • Maulik U., Mukhopadhyay A., and Bandyopadhyay S. Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes. BMC Bioinformatics 10 27 (2009)
    • (2009) BMC Bioinformatics , vol.10 , Issue.27
    • Maulik, U.1    Mukhopadhyay, A.2    Bandyopadhyay, S.3
  • 16
    • 0030765448 scopus 로고    scopus 로고
    • MIPS: a database for protein sequences, homology data and yeast genome information
    • Mewes H.W., Albermann K., Heumann K., Liebl S., and Pfeiffer F. MIPS: a database for protein sequences, homology data and yeast genome information. Nucleic Acid Research 25 (1997) 28-30
    • (1997) Nucleic Acid Research , vol.25 , pp. 28-30
    • Mewes, H.W.1    Albermann, K.2    Heumann, K.3    Liebl, S.4    Pfeiffer, F.5
  • 18
    • 0036678783 scopus 로고    scopus 로고
    • Analysis of expression profile using fuzzy adaptive resonance theory
    • Tomida S., Hanai T., Honda H., and Kobayashi T. Analysis of expression profile using fuzzy adaptive resonance theory. Bioinformatics 18 8 (2002) 1073-1083
    • (2002) Bioinformatics , vol.18 , Issue.8 , pp. 1073-1083
    • Tomida, S.1    Hanai, T.2    Honda, H.3    Kobayashi, T.4
  • 20
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • Crammer K., and Singer Y. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research 2 (2001) 265-292
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 22
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm based clustering technique
    • Maulik U., and Bandyopadhyay S. Genetic algorithm based clustering technique. Pattern Recognition 33 (2000) 1455-1465
    • (2000) Pattern Recognition , vol.33 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 23
    • 8844278616 scopus 로고    scopus 로고
    • Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification
    • Maulik U., and Bandyopadhyay S. Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Transactions on Geoscience and Remote Sensing 41 5 (2003) 1075-1081
    • (2003) IEEE Transactions on Geoscience and Remote Sensing , vol.41 , Issue.5 , pp. 1075-1081
    • Maulik, U.1    Bandyopadhyay, S.2
  • 24
    • 33747830882 scopus 로고    scopus 로고
    • Clustering microarray gene expression data using weighted Chinese restaurant process
    • Qin Z.S. Clustering microarray gene expression data using weighted Chinese restaurant process. Bioinformatics 22 16 (2006) 1988-1997
    • (2006) Bioinformatics , vol.22 , Issue.16 , pp. 1988-1997
    • Qin, Z.S.1
  • 25
    • 0034800371 scopus 로고    scopus 로고
    • An empirical study on principal component analysis for clustering gene expression data
    • Yeung K.Y., and Ruzzo W.L. An empirical study on principal component analysis for clustering gene expression data. Bioinformatics 17 9 (2001) 763-774
    • (2001) Bioinformatics , vol.17 , Issue.9 , pp. 763-774
    • Yeung, K.Y.1    Ruzzo, W.L.2
  • 26
    • 0023453329 scopus 로고
    • Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw P.J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20 (1987) 53-65
    • (1987) Journal of Computational and Applied Mathematics , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 27
    • 0037273544 scopus 로고    scopus 로고
    • Cluster analysis of gene expression data
    • Domany E. Cluster analysis of gene expression data. Journal of Statistical Physics 110 3-6 (2003) 1117-1139
    • (2003) Journal of Statistical Physics , vol.110 , Issue.3-6 , pp. 1117-1139
    • Domany, E.1
  • 28
    • 33645552696 scopus 로고    scopus 로고
    • Effect of data normalization on fuzzy clustering of DNA microarray data
    • Kim S.Y., Lee J.W., and Bae J.S. Effect of data normalization on fuzzy clustering of DNA microarray data. BMC Bioinformatics 7 134 (2006)
    • (2006) BMC Bioinformatics , vol.7 , Issue.134
    • Kim, S.Y.1    Lee, J.W.2    Bae, J.S.3
  • 29
    • 27644485640 scopus 로고    scopus 로고
    • A new convergence proof of fuzzy c-means
    • Groll L., and Jakel J. A new convergence proof of fuzzy c-means. IEEE Transactions on Fuzzy Systems 13 5 (2005) 717-720
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.5 , pp. 717-720
    • Groll, L.1    Jakel, J.2
  • 32
    • 0036604864 scopus 로고    scopus 로고
    • Genetic clustering for automatic evolution of clusters and application to image classification
    • Bandyopadhyay S., and Maulik U. Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recognition 35 6 (2002) 1197-1208
    • (2002) Pattern Recognition , vol.35 , Issue.6 , pp. 1197-1208
    • Bandyopadhyay, S.1    Maulik, U.2
  • 34
    • 0032207706 scopus 로고    scopus 로고
    • Pattern classification using genetic algorithms: determination of H
    • Bandyopadhyay S. Pattern classification using genetic algorithms: determination of H. Pattern Recognition Letters 19 13 (1998) 1171-1181
    • (1998) Pattern Recognition Letters , vol.19 , Issue.13 , pp. 1171-1181
    • Bandyopadhyay, S.1
  • 35
    • 15344339503 scopus 로고    scopus 로고
    • An efficient technique for superfamily classification of amino acid sequences: feature extraction, fuzzy clustering and prototype selection
    • Bandyopadhyay S. An efficient technique for superfamily classification of amino acid sequences: feature extraction, fuzzy clustering and prototype selection. Fuzzy Sets and Systems 152 1 (2005) 5-16
    • (2005) Fuzzy Sets and Systems , vol.152 , Issue.1 , pp. 5-16
    • Bandyopadhyay, S.1
  • 36
    • 0036798238 scopus 로고    scopus 로고
    • Judging the quality of gene expression-based clustering methods using gene annotation
    • Gibbons F., and Roth F. Judging the quality of gene expression-based clustering methods using gene annotation. Genome Research 12 (2002) 1574-1581
    • (2002) Genome Research , vol.12 , pp. 1574-1581
    • Gibbons, F.1    Roth, F.2
  • 37
    • 33947326847 scopus 로고    scopus 로고
    • Metric for measuring the effectiveness of clustering of dna microarray expression
    • Loganantharaj R., Cheepala S., and Clifford J. Metric for measuring the effectiveness of clustering of dna microarray expression. BMC Bioinformatics 7 Suppl. 2 (2006)
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 2
    • Loganantharaj, R.1    Cheepala, S.2    Clifford, J.3
  • 38
    • 0034119379 scopus 로고    scopus 로고
    • Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis
    • Reymonda P., Webera H., Damonda M., and Farmera E.E. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12 (2000) 707-720
    • (2000) Plant Cell , vol.12 , pp. 707-720
    • Reymonda, P.1    Webera, H.2    Damonda, M.3    Farmera, E.E.4
  • 41
    • 0035755959 scopus 로고    scopus 로고
    • Minimum spanning trees for gene expression data clustering
    • Xu Y., Olman V., and Xu D. Minimum spanning trees for gene expression data clustering. Genome Informatics 12 (2001) 24-33
    • (2001) Genome Informatics , vol.12 , pp. 24-33
    • Xu, Y.1    Olman, V.2    Xu, D.3
  • 44
    • 17044374644 scopus 로고    scopus 로고
    • Simulated annealing using reversible jump Markov chain Monte Carlo algorithm for fuzzy clustering
    • Bandyopadhyay S. Simulated annealing using reversible jump Markov chain Monte Carlo algorithm for fuzzy clustering. IEEE Transactions on Knowledge and Data Engineering 17 4 (2005) 479-490
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 479-490
    • Bandyopadhyay, S.1
  • 46
    • 67349110181 scopus 로고    scopus 로고
    • Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery
    • in press, doi:10.1016/j.patcog.2009.01.011
    • U. Maulik I. Saha, Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery, Pattern Recognition, 2009, in press, doi:10.1016/j.patcog.2009.01.011.
    • (2009) Pattern Recognition
    • Maulik, U.1    Saha, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.