메뉴 건너뛰기




Volumn 44, Issue 1, 2008, Pages 7-25

CARSVM: A class association rule-based classification framework and its application to gene expression data

Author keywords

Association rule mining; Associative classifiers; Data mining; Gene expression analysis; Gene expression classification; Gene selection; Machine learning; Support vector machine

Indexed keywords

ARTIFICIAL INTELLIGENCE; ASSOCIATION RULES; ASSOCIATIVE PROCESSING; BIOACTIVITY; CLASSIFICATION (OF INFORMATION); CLASSIFIERS; EDUCATION; FEATURE EXTRACTION; GENE EXPRESSION; LAWS AND LEGISLATION; LEARNING SYSTEMS; SET THEORY; SUPPORT VECTOR MACHINES; VECTORS;

EID: 50049112106     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2008.05.002     Document Type: Article
Times cited : (20)

References (42)
  • 2
    • 50049096266 scopus 로고    scopus 로고
    • Pazzani MJ, Mani S, Shankle WR. Beyond concise and colorful: learning intelligible rules. In Proceedings of the third international conference on knowledge discovery and data mining. Menlo Park, California, USA: AAAI Press; 1997. p. 235-8.
    • Pazzani MJ, Mani S, Shankle WR. Beyond concise and colorful: learning intelligible rules. In Proceedings of the third international conference on knowledge discovery and data mining. Menlo Park, California, USA: AAAI Press; 1997. p. 235-8.
  • 5
    • 50049132721 scopus 로고    scopus 로고
    • Piatetsky-Shapiro G, Tamayo P. Microarray data mining: facing the challenges. SIGKDD Explorations, Newsl 5, 2; December 2003. p. 1-5.
    • Piatetsky-Shapiro G, Tamayo P. Microarray data mining: facing the challenges. SIGKDD Explorations, Newsl 5, 2; December 2003. p. 1-5.
  • 6
    • 35248813312 scopus 로고    scopus 로고
    • Bioinformatics adventures in database research
    • Number 2572 in 'Lecture notes in computer science'. Springer
    • Li J., Ng S., and Wong L. Bioinformatics adventures in database research. Proceedings of the international conference on database theory (ICDT). Number 2572 in 'Lecture notes in computer science'. Springer (2002) 31-46
    • (2002) Proceedings of the international conference on database theory (ICDT) , pp. 31-46
    • Li, J.1    Ng, S.2    Wong, L.3
  • 7
    • 0642282547 scopus 로고    scopus 로고
    • Using feature generation and feature selection for accurate prediction of translation initiation sites
    • Zeng F., Yap R., and Wong L. Using feature generation and feature selection for accurate prediction of translation initiation sites. Proceedings of international conference on genome informatics (2002) 192-200
    • (2002) Proceedings of international conference on genome informatics , pp. 192-200
    • Zeng, F.1    Yap, R.2    Wong, L.3
  • 12
    • 0036083435 scopus 로고    scopus 로고
    • Identifying good diagnostic genes or genes groups from gene expression data by using the concept of emerging patterns
    • Li J., and Wong L. Identifying good diagnostic genes or genes groups from gene expression data by using the concept of emerging patterns. Bioinformatics 18 (2002) 725-734
    • (2002) Bioinformatics , vol.18 , pp. 725-734
    • Li, J.1    Wong, L.2
  • 13
    • 85142159103 scopus 로고    scopus 로고
    • Creighton C, Hanash S. Mining gene expression databases for association rules. Bioinformatics 2003;19:79-86. Oxford University Press.
    • Creighton C, Hanash S. Mining gene expression databases for association rules. Bioinformatics 2003;19:79-86. Oxford University Press.
  • 14
    • 33846199228 scopus 로고    scopus 로고
    • Coenen FP, Leng P. The effect of threshold values on association rule based classification accuracy. J Data Knowledge Eng 2007;60(2):345-60. Elsevier Science Publishers.
    • Coenen FP, Leng P. The effect of threshold values on association rule based classification accuracy. J Data Knowledge Eng 2007;60(2):345-60. Elsevier Science Publishers.
  • 15
    • 33749539847 scopus 로고    scopus 로고
    • Scheffer T. Finding association rules that trade support optimally against confidence. Intell Data Anal 2005;9(3):381-95. IOS Press.
    • Scheffer T. Finding association rules that trade support optimally against confidence. Intell Data Anal 2005;9(3):381-95. IOS Press.
  • 18
    • 33750554244 scopus 로고    scopus 로고
    • Kianmehr K, Alhajj R. Effective classification by integrating support vector machine and association rule mining. In Proceedings of the international conference on intelligent data engineering and automated learning (IDEAL'06). Burgos, Spain: Springer-Verlag LNCS; 2006. p. 920-7.
    • Kianmehr K, Alhajj R. Effective classification by integrating support vector machine and association rule mining. In Proceedings of the international conference on intelligent data engineering and automated learning (IDEAL'06). Burgos, Spain: Springer-Verlag LNCS; 2006. p. 920-7.
  • 19
    • 50049100198 scopus 로고    scopus 로고
    • Mukherjee S, Tamayo P, Slonim D, Verri A, Golub T, Mesirov JP, et al. Support vector machine classification of microarray data. Technical Report AI Memo 1677, Artificial Intelligence Laboratory, Massachusetts Institute of Technology; 2000.
    • Mukherjee S, Tamayo P, Slonim D, Verri A, Golub T, Mesirov JP, et al. Support vector machine classification of microarray data. Technical Report AI Memo 1677, Artificial Intelligence Laboratory, Massachusetts Institute of Technology; 2000.
  • 20
    • 0347079826 scopus 로고    scopus 로고
    • Moler EJ, Chow ML, Mian IS. Analysis of molecular profile data using generative and discriminative methods. Physiol Genom 2000;4:109-26. American Physiological Society.
    • Moler EJ, Chow ML, Mian IS. Analysis of molecular profile data using generative and discriminative methods. Physiol Genom 2000;4:109-26. American Physiological Society.
  • 21
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data using support vector machines
    • Brown W., Lin D., Cristianini D., Sugnet C., Furey T., Ares M., et al. Knowledge-based analysis of microarray gene expression data using support vector machines. Proc Natl Acad Sci USA 97 1 (2000) 262-267
    • (2000) Proc Natl Acad Sci USA , vol.97 , Issue.1 , pp. 262-267
    • Brown, W.1    Lin, D.2    Cristianini, D.3    Sugnet, C.4    Furey, T.5    Ares, M.6
  • 22
    • 0000060617 scopus 로고    scopus 로고
    • Yeang C, Ramaswamy S, Tamayo P, Mukherjee S, Rifkin RM, Angelo M, et al. Molecular classification of multiple tumor types. Bioinformatics 2001;17(1):316-22. Oxford University Press.
    • Yeang C, Ramaswamy S, Tamayo P, Mukherjee S, Rifkin RM, Angelo M, et al. Molecular classification of multiple tumor types. Bioinformatics 2001;17(1):316-22. Oxford University Press.
  • 24
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • Prieditis A., and Russell S. (Eds). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
    • Dougherty J., Kohavi R., and Sahami M. Supervised and unsupervised discretization of continuous features. In: Prieditis A., and Russell S. (Eds). Proceedings of the international conference on machine learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. (1995) 194-202
    • (1995) Proceedings of the international conference on machine learning , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 26
    • 50049106846 scopus 로고    scopus 로고
    • Coenen F, "LUCS-KDD DN Software (Version 2)". URL: http://www.csc.liv.ac.uk/∼frans/KDD/Software/LUCS_KDD_DN/ (accessed April 2008). Department of Computer Science, The University of Liverpool, UK; 2003.
    • Coenen F, "LUCS-KDD DN Software (Version 2)". URL: http://www.csc.liv.ac.uk/∼frans/KDD/Software/LUCS_KDD_DN/ (accessed April 2008). Department of Computer Science, The University of Liverpool, UK; 2003.
  • 27
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • Bocca J.B., Jarke M., and Zaniolo C. (Eds). San Francisco, CA: Morgan Kaufmann Publishers Inc.
    • Agrawal R., and Srikant R. Fast algorithms for mining association rules in large databases. In: Bocca J.B., Jarke M., and Zaniolo C. (Eds). Proceedings of the 20th international conference on very large data bases. San Francisco, CA: Morgan Kaufmann Publishers Inc. (1994) 487-499
    • (1994) Proceedings of the 20th international conference on very large data bases , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 28
    • 0142151167 scopus 로고    scopus 로고
    • Improving reliability of gene selection from microarray functional genomics data
    • Fu L.M., and Youn E.S. Improving reliability of gene selection from microarray functional genomics data. IEEE Trans Inform Technol Biomed 7 3 (2003) 191-196
    • (2003) IEEE Trans Inform Technol Biomed , vol.7 , Issue.3 , pp. 191-196
    • Fu, L.M.1    Youn, E.S.2
  • 29
    • 0036161259 scopus 로고    scopus 로고
    • Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn 2002;46(1-3):389-422. Hingham, MA: Kluwer Academic Publishers.
    • Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn 2002;46(1-3):389-422. Hingham, MA: Kluwer Academic Publishers.
  • 30
    • 0038313118 scopus 로고    scopus 로고
    • Becquet C, Blachon S, Jeudy B, Boulicaut J, Gandrillon O. Strong-association-rule mining for large-scale gene-expression data analysis: a case study on human SAGE data. Genome Biol 2002;3(12):research0067.1-research0067.16.
    • Becquet C, Blachon S, Jeudy B, Boulicaut J, Gandrillon O. Strong-association-rule mining for large-scale gene-expression data analysis: a case study on human SAGE data. Genome Biol 2002;3(12):research0067.1-research0067.16.
  • 31
    • 50049084755 scopus 로고    scopus 로고
    • Chang CC, Lin CJ. LIBSVM: a library for support vector machines. URL: http://www.csie.ntu.edu.tw/∼cjlin/libsvm (accessed April 2008); 2001.
    • Chang CC, Lin CJ. LIBSVM: a library for support vector machines. URL: http://www.csie.ntu.edu.tw/∼cjlin/libsvm (accessed April 2008); 2001.
  • 32
    • 50049083914 scopus 로고    scopus 로고
    • Fu LM. Cancer subtype classification based on gene expression signatures. URL: http://www.cise.ufl.edu/∼fu/NSF/cancer_classify_GES.html (accessed April 25, 2008).
    • Fu LM. Cancer subtype classification based on gene expression signatures. URL: http://www.cise.ufl.edu/∼fu/NSF/cancer_classify_GES.html (accessed April 25, 2008).
  • 33
    • 50049130546 scopus 로고    scopus 로고
    • Merz CJ, Murphy P. UCI repository of machine learning database. URL: http://www.cs.uci.edu/∼mlearn/MLRepository.html (accessed April 25, 2008); 1996.
    • Merz CJ, Murphy P. UCI repository of machine learning database. URL: http://www.cs.uci.edu/∼mlearn/MLRepository.html (accessed April 25, 2008); 1996.
  • 34
    • 50049112232 scopus 로고    scopus 로고
    • URL: http://sdmc.lit.org.sg/GEDatasets/Datasets.html (accessed April 25, 2008).
    • URL: http://sdmc.lit.org.sg/GEDatasets/Datasets.html (accessed April 25, 2008).
  • 35
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S., Fridly J., and Speed T.P. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97 (2002) 77-87
    • (2002) J Am Stat Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridly, J.2    Speed, T.P.3
  • 36
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 (1999) 531-537
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.P.6
  • 37
    • 3142521566 scopus 로고    scopus 로고
    • Joint classifier and feature optimization for comprehensive cancer diagnosis using gene expression data
    • Krishnapuram B., Carin L., and Hartemink A.J. Joint classifier and feature optimization for comprehensive cancer diagnosis using gene expression data. J Comput Biol 11 2-3 (2004) 227-242
    • (2004) J Comput Biol , vol.11 , Issue.2-3 , pp. 227-242
    • Krishnapuram, B.1    Carin, L.2    Hartemink, A.J.3
  • 38
    • 0037250118 scopus 로고    scopus 로고
    • Prediction of biologically significant components from microarray data: independently consistent expression discrimination (ICED)
    • Bijlani R., Cheng Y., Pearce D.A., Brooks A.I., and Ogihara M. Prediction of biologically significant components from microarray data: independently consistent expression discrimination (ICED). Bioinformatics 19 (2003) 62-70
    • (2003) Bioinformatics , vol.19 , pp. 62-70
    • Bijlani, R.1    Cheng, Y.2    Pearce, D.A.3    Brooks, A.I.4    Ogihara, M.5
  • 39
    • 0037364246 scopus 로고    scopus 로고
    • Cathepsin B and H activities and cystatin C concentrations in cerebrospinal fluid from patients with leptomeningeal metastasis
    • Nagai A., Terashima M., Harada T., Shimode K., Takeuchi H., Murakawa Y., et al. Cathepsin B and H activities and cystatin C concentrations in cerebrospinal fluid from patients with leptomeningeal metastasis. Clin Chim Acta 329 (2003) 53-60
    • (2003) Clin Chim Acta , vol.329 , pp. 53-60
    • Nagai, A.1    Terashima, M.2    Harada, T.3    Shimode, K.4    Takeuchi, H.5    Murakawa, Y.6
  • 40
    • 0037066775 scopus 로고    scopus 로고
    • PLIF, a novel human ferritin subunit from placenta with immunosuppressive activity
    • Moroz C., Traub L., Maymon R., and Zahalka M.A. PLIF, a novel human ferritin subunit from placenta with immunosuppressive activity. J Biol Chem 277 (2002) 12901-12905
    • (2002) J Biol Chem , vol.277 , pp. 12901-12905
    • Moroz, C.1    Traub, L.2    Maymon, R.3    Zahalka, M.A.4
  • 41
    • 33750328319 scopus 로고    scopus 로고
    • HOXB7, a homeodomain protein, is overexpressed in breast cancer and confers epithelial-mesenchymal transition
    • Wu X., Chen H., Parker B., Rubin E., Zhu T., Lee J.S., et al. HOXB7, a homeodomain protein, is overexpressed in breast cancer and confers epithelial-mesenchymal transition. Cancer Res 66 (2006) 9527-9534
    • (2006) Cancer Res , vol.66 , pp. 9527-9534
    • Wu, X.1    Chen, H.2    Parker, B.3    Rubin, E.4    Zhu, T.5    Lee, J.S.6
  • 42
    • 2942624260 scopus 로고    scopus 로고
    • Expression of biomarkers modulating prostate cancer angiogenesis: differential expression of annexin II in prostate carcinomas from India and USA
    • Banerjee A.G., Liu J., Yuan Y., Gopalakrishnan V.K., Johansson S.L., Dinda A.K., et al. Expression of biomarkers modulating prostate cancer angiogenesis: differential expression of annexin II in prostate carcinomas from India and USA. Mol Cancer (2003) 2-34
    • (2003) Mol Cancer , pp. 2-34
    • Banerjee, A.G.1    Liu, J.2    Yuan, Y.3    Gopalakrishnan, V.K.4    Johansson, S.L.5    Dinda, A.K.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.