메뉴 건너뛰기




Volumn 40, Issue 5, 2010, Pages 519-524

Forest classification trees and forest support vector machines algorithms: Demonstration using microarray data

Author keywords

Algorithms; Classification; Classification trees; Forest; Gene expression; Microarrays; Support vector machines

Indexed keywords

CLASSIFICATION ALGORITHM; CLASSIFICATION TREES; DECISION RULES; FOREST; FOREST CLASSIFICATION; GENE EXPRESSION DATA; GENE EXPRESSION MICROARRAY; HIGH DIMENSIONAL DATA; MICROARRAY DATA; MISCLASSIFICATION RATES; MISCLASSIFICATIONS; MULTIPLE CLASS; SUPPORT VECTOR MACHINES ALGORITHMS; TERMINAL NODES; TISSUE SAMPLES;

EID: 77952541011     PISSN: 00104825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2010.03.006     Document Type: Article
Times cited : (12)

References (50)
  • 1
    • 33745279056 scopus 로고    scopus 로고
    • Evaluating coverage of genome-wide association studies
    • Barrett J.C., Cardon L.R. Evaluating coverage of genome-wide association studies. Nat. Genet. 2006, 38:659-662.
    • (2006) Nat. Genet. , vol.38 , pp. 659-662
    • Barrett, J.C.1    Cardon, L.R.2
  • 2
    • 0037434977 scopus 로고    scopus 로고
    • Biomedical informatics for proteomics
    • Boguski M.S., McIntosh M.W. Biomedical informatics for proteomics. Nature 2003, 422:233-237.
    • (2003) Nature , vol.422 , pp. 233-237
    • Boguski, M.S.1    McIntosh, M.W.2
  • 4
    • 37648998741 scopus 로고    scopus 로고
    • Meta-analysis for ranked discovery datasets: theoretical framework and empirical demonstration for microarrays
    • Zintzaras E., Ioannidis J.P. Meta-analysis for ranked discovery datasets: theoretical framework and empirical demonstration for microarrays. Comput. Biol. Chem. 2008, 32:38-46.
    • (2008) Comput. Biol. Chem. , vol.32 , pp. 38-46
    • Zintzaras, E.1    Ioannidis, J.P.2
  • 5
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S., Fridlyand J., Speed T.P. Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 2002, 97:77-87.
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 6
    • 8144224602 scopus 로고    scopus 로고
    • Multiclass decision forest-a novel pattern recognition method for multiclass classification in microarray data analysis
    • Hong H., Tong W., Perkins R., Fang H., Xie Q., Shi L. Multiclass decision forest-a novel pattern recognition method for multiclass classification in microarray data analysis. DNA Cell Biol. 2004, 23:685-694.
    • (2004) DNA Cell Biol. , vol.23 , pp. 685-694
    • Hong, H.1    Tong, W.2    Perkins, R.3    Fang, H.4    Xie, Q.5    Shi, L.6
  • 7
    • 22944466045 scopus 로고    scopus 로고
    • Molecular diagnosis. classification, model selection and performance evaluation
    • Markowetz F., Spang R. Molecular diagnosis. classification, model selection and performance evaluation. Meth. Inf. Med. 2005, 44:438-443.
    • (2005) Meth. Inf. Med. , vol.44 , pp. 438-443
    • Markowetz, F.1    Spang, R.2
  • 9
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T.S., Cristianini N., Duffy N., Bednarski D.W., Schummer M., Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16:906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46:389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 11
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C.W., Lin C.J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks 2002, 13:415-425.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 17
    • 0028245530 scopus 로고
    • Growing a classification tree using the apparent misclassification rate
    • Zintzaras E., Brown N.P., Kowald A. Growing a classification tree using the apparent misclassification rate. Comput. Appl. Biosci. 1994, 10:263-271.
    • (1994) Comput. Appl. Biosci. , vol.10 , pp. 263-271
    • Zintzaras, E.1    Brown, N.P.2    Kowald, A.3
  • 20
    • 0035810997 scopus 로고    scopus 로고
    • Recursive partitioning for tumor classification with gene expression microarray data
    • Zhang H., Yu C.Y., Singer B., Xiong M. Recursive partitioning for tumor classification with gene expression microarray data. Proc. Natl. Acad. Sci. USA 2001, 98:6730-6735.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 6730-6735
    • Zhang, H.1    Yu, C.Y.2    Singer, B.3    Xiong, M.4
  • 22
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 24
    • 0033680875 scopus 로고    scopus 로고
    • Use of classification trees for association studies
    • Zhang H., Bonney G. Use of classification trees for association studies. Genet. Epidemiol. 2000, 19:323-332.
    • (2000) Genet. Epidemiol. , vol.19 , pp. 323-332
    • Zhang, H.1    Bonney, G.2
  • 25
    • 29744461686 scopus 로고    scopus 로고
    • Non-parametric classification of protein secondary structures
    • Zintzaras E., Brown N.P., Kowald A. Non-parametric classification of protein secondary structures. Comput. Biol. Med. 2006, 36:145-156.
    • (2006) Comput. Biol. Med. , vol.36 , pp. 145-156
    • Zintzaras, E.1    Brown, N.P.2    Kowald, A.3
  • 26
    • 33947142491 scopus 로고    scopus 로고
    • A tree-based decision rule for identifying profile groups of cases without predefined classes: application in diffuse large B-cell lymphomas
    • Zintzaras E., Bai M., Douligeris C., Kowald A., Kanavaros P. A tree-based decision rule for identifying profile groups of cases without predefined classes: application in diffuse large B-cell lymphomas. Comput. Biol. Med. 2007, 37:637-641.
    • (2007) Comput. Biol. Med. , vol.37 , pp. 637-641
    • Zintzaras, E.1    Bai, M.2    Douligeris, C.3    Kowald, A.4    Kanavaros, P.5
  • 27
    • 40949119379 scopus 로고    scopus 로고
    • Classification tree based protein structure distances for testing sequence-structure correlation
    • Zintzaras E. Classification tree based protein structure distances for testing sequence-structure correlation. Comput. Biol. Med. 2008, 38:469-474.
    • (2008) Comput. Biol. Med. , vol.38 , pp. 469-474
    • Zintzaras, E.1
  • 28
    • 38349046524 scopus 로고    scopus 로고
    • Classification and regression trees, bagging, and boosting, in: C.R. Rao, E.J. Wegman, J.L. Solka, (Eds.), Handbook of Statistics
    • C.D. Sutton, Classification and regression trees, bagging, and boosting, in: C.R. Rao, E.J. Wegman, J.L. Solka, (Eds.), Handbook of Statistics, vol. 24, 2005 pp. 302-328.
    • (2005) , vol.24 , pp. 302-328
    • Sutton, C.D.1
  • 29
    • 0026311694 scopus 로고
    • Statistical data analysis in the computer age
    • Efron B., Tibshirani R. Statistical data analysis in the computer age. Science 1991, 253:390-395.
    • (1991) Science , vol.253 , pp. 390-395
    • Efron, B.1    Tibshirani, R.2
  • 31
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Diaz-Uriarte R., varez de A.S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006, 7:3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    varez de, A.S.2
  • 32
    • 27944493276 scopus 로고    scopus 로고
    • Classification of microarrays to nearest centroids
    • Dabney A.R. Classification of microarrays to nearest centroids. Bioinformatics 2005, 21:4148-4154.
    • (2005) Bioinformatics , vol.21 , pp. 4148-4154
    • Dabney, A.R.1
  • 33
    • 0037447386 scopus 로고    scopus 로고
    • Pattern recognition in gene expression profiling using DNA array: a comparative study of different statistical methods applied to cancer classification
    • Romualdi C., Campanaro S., Campagna D., Celegato B., Cannata N., Toppo S., Valle G., Lanfranchi G. Pattern recognition in gene expression profiling using DNA array: a comparative study of different statistical methods applied to cancer classification. Hum. Mol. Genet. 2003, 12:823-836.
    • (2003) Hum. Mol. Genet. , vol.12 , pp. 823-836
    • Romualdi, C.1    Campanaro, S.2    Campagna, D.3    Celegato, B.4    Cannata, N.5    Toppo, S.6    Valle, G.7    Lanfranchi, G.8
  • 34
    • 2442682055 scopus 로고    scopus 로고
    • Hybrid decision tree/genetic algorithm method for data mining
    • Carvalho D.R., Freitas A.A. Hybrid decision tree/genetic algorithm method for data mining. Inf. Sci. 2004, 163:13-35.
    • (2004) Inf. Sci. , vol.163 , pp. 13-35
    • Carvalho, D.R.1    Freitas, A.A.2
  • 35
    • 77952541525 scopus 로고    scopus 로고
    • A genetic algorithm for constructing compact binary decision trees
    • Cha S.H., Tappert C.C. A genetic algorithm for constructing compact binary decision trees. J. Pattern Recognition Res. 2009, 4:1-13.
    • (2009) J. Pattern Recognition Res. , vol.4 , pp. 1-13
    • Cha, S.H.1    Tappert, C.C.2
  • 37
    • 0027696338 scopus 로고
    • Using genetic algorithms for concept-learning
    • Dejong K.A., Spears W.M., Gordon D.F. Using genetic algorithms for concept-learning. Mach. Learn. 1993, 13:161-188.
    • (1993) Mach. Learn. , vol.13 , pp. 161-188
    • Dejong, K.A.1    Spears, W.M.2    Gordon, D.F.3
  • 38
    • 35548967562 scopus 로고    scopus 로고
    • Classification tree analysis using TARGET
    • Gray J.B., Fan G.Z. Classification tree analysis using TARGET. Comput. Stat. Data Anal. 2008, 52:1362-1372.
    • (2008) Comput. Stat. Data Anal. , vol.52 , pp. 1362-1372
    • Gray, J.B.1    Fan, G.Z.2
  • 39
    • 0000865580 scopus 로고
    • Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm
    • Turney P.D. Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm. J. Artif. Intell. Res. 1995, 2:369-409.
    • (1995) J. Artif. Intell. Res. , vol.2 , pp. 369-409
    • Turney, P.D.1
  • 40
    • 77952543640 scopus 로고    scopus 로고
    • Breeding decision trees using evolutionary techniques, in: International Conference on Machine Learning, Williamstown.
    • A. Papagelis, D. Kalles, Breeding decision trees using evolutionary techniques, in: International Conference on Machine Learning, Williamstown, 2001.
    • (2001)
    • Papagelis, A.1    Kalles, D.2
  • 41
    • 84949680505 scopus 로고    scopus 로고
    • GATree: Genetically evolved decision trees, in: Proceedings of 12th IEEE International Conference on Tools with Artificial Intelligence, Vancouver
    • A. Papagelis, D. Kalles, GATree: Genetically evolved decision trees, in: Proceedings of 12th IEEE International Conference on Tools with Artificial Intelligence, Vancouver, 2000.
    • (2000)
    • Papagelis, A.1    Kalles, D.2
  • 42
    • 77951869235 scopus 로고    scopus 로고
    • Lossless fitness inheritance in genetic algorithms for decision trees, Soft Computing, in press.
    • A. Papagelis, D. Kalles, Lossless fitness inheritance in genetic algorithms for decision trees, Soft Computing, in press. doi:10.1007/s00500-009-0489-y.
    • Papagelis, A.1    Kalles, D.2
  • 43
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method
    • Li L., Weinberg C.R., Darden T.A., Pedersen L.G. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 2001, 17:1131-1142.
    • (2001) Bioinformatics , vol.17 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 44
    • 0033369708 scopus 로고    scopus 로고
    • Statistical tree classification of aphids based on morphological characters
    • Zintzaras E., Margaritopoulos J., Tsitsipis J. Statistical tree classification of aphids based on morphological characters. Comput. Electron. Agric. 1999, 24:165-175.
    • (1999) Comput. Electron. Agric. , vol.24 , pp. 165-175
    • Zintzaras, E.1    Margaritopoulos, J.2    Tsitsipis, J.3
  • 45
    • 0019020917 scopus 로고
    • On dimensionality, sample size, classification error and complexity of classification algorithm in pattern recognition
    • Raudys S., Pikelis V. On dimensionality, sample size, classification error and complexity of classification algorithm in pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1980, 242-252.
    • (1980) IEEE Trans. Pattern Anal. Mach. Intell. , pp. 242-252
    • Raudys, S.1    Pikelis, V.2
  • 46
    • 0031162662 scopus 로고    scopus 로고
    • On dimensionality, sample size and classification error of nonparametric linear classification algorithms
    • Raudys S. On dimensionality, sample size and classification error of nonparametric linear classification algorithms. IEEE Trans. Pattern. Anal. Mach. Intell. 1997, 19:667-671.
    • (1997) IEEE Trans. Pattern. Anal. Mach. Intell. , vol.19 , pp. 667-671
    • Raudys, S.1
  • 48
    • 0021643895 scopus 로고
    • An analysis of the effects of sample size on classification performance of a histogram based cluster analysis procedure
    • Wharton S.W. An analysis of the effects of sample size on classification performance of a histogram based cluster analysis procedure. Pattern Recognition 1984, 17:239-244.
    • (1984) Pattern Recognition , vol.17 , pp. 239-244
    • Wharton, S.W.1
  • 49
    • 0346252356 scopus 로고    scopus 로고
    • A CART-based approach to discover emerging patterns in microarray data
    • Boulesteix A.L., Tutz G., Strimmer K. A CART-based approach to discover emerging patterns in microarray data. Bioinformatics 2003, 19:2465-2472.
    • (2003) Bioinformatics , vol.19 , pp. 2465-2472
    • Boulesteix, A.L.1    Tutz, G.2    Strimmer, K.3
  • 50
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • Braga-Neto U.M., Dougherty E.R. Is cross-validation valid for small-sample microarray classification?. Bioinformatics 2004, 20:374-380.
    • (2004) Bioinformatics , vol.20 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.