메뉴 건너뛰기




Volumn 79, Issue , 2012, Pages 26-38

Efficient twin parametric insensitive support vector regression model

Author keywords

Noise heteroscedastic model; Nonparallel functions; Parametric insensitive model; Regression estimation; Support vector machine

Indexed keywords

BENCHMARK DATASETS; FAST LEARNING; GENERALIZATION PERFORMANCE; HETEROSCEDASTIC; INPUT VALUES; LEARNING SPEED; REGRESSION ESTIMATION; REGRESSION FUNCTION; SUPPORT VECTOR; SUPPORT VECTOR REGRESSION MODELS; SUPPORT VECTOR REGRESSIONS;

EID: 83955162266     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.09.021     Document Type: Article
Times cited : (55)

References (36)
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining Knowl. Discovery 1998, 2(2):121-167.
    • (1998) Data Mining Knowl. Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 5
    • 0030673582 scopus 로고    scopus 로고
    • Training support vector machines: An application to face detection, in: Proceedings of IEEE Computer Vision and Pattern Recognition, San Juan, Puerto Rico
    • E. Osuna, R. Freund, F. Girosi, Training support vector machines: An application to face detection, in: Proceedings of IEEE Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 1997, pp. 130-136.
    • (1997) , pp. 130-136
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 6
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: learning with many relevant features, in: European Conference on Machine Learning No. 10, Chemnitz, Germany
    • T. Joachims, C. Ndellec, C. Rouveriol, Text categorization with support vector machines: learning with many relevant features, in: European Conference on Machine Learning No. 10, Chemnitz, Germany, 1998, pp. 137-142.
    • (1998) , pp. 137-142
    • Joachims, T.1    Ndellec, C.2    Rouveriol, C.3
  • 7
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data by using support vector machine
    • Brown M.P.S., Grundy W.N., Lin D., et al. Knowledge-based analysis of microarray gene expression data by using support vector machine. Proc. Natl. Acad. Sci. USA 2000, 97(1):262-267.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , Issue.1 , pp. 262-267
    • Brown, M.P.S.1    Grundy, W.N.2    Lin, D.3
  • 8
    • 0038104242 scopus 로고    scopus 로고
    • Joint time-frequency-space classification of EEG in a brain-computer interface application
    • Ebrahimi T., Garcia G.N., Vesin J.M. Joint time-frequency-space classification of EEG in a brain-computer interface application. J. Appl. Signal Process. 2003, 1(7):713-729.
    • (2003) J. Appl. Signal Process. , vol.1 , Issue.7 , pp. 713-729
    • Ebrahimi, T.1    Garcia, G.N.2    Vesin, J.M.3
  • 9
    • 83955160838 scopus 로고    scopus 로고
    • Support vector machine for regression and applications to financial forecasting, in: International Joint Conference on Neural Networks, IEEE-INNS-ENNS, Como, Italy
    • H. Ince, T.B. Trafalis, Support vector machine for regression and applications to financial forecasting, in: International Joint Conference on Neural Networks, IEEE-INNS-ENNS, Como, Italy, 2002.
    • (2002)
    • Ince, H.1    Trafalis, T.B.2
  • 10
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C., Vapnik V.N. Support vector networks. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 11
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge, MA, B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.)
    • Platt J. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods-Support Vector Learning 1999, 185-208. MIT Press, Cambridge, MA. B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.).
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 13
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • MIT Press, Cambridge, MA, B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.)
    • Joachims T. Making large-scale SVM learning practical. Advances in Kernel Methods 1999, 169-184. MIT Press, Cambridge, MA. B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.).
    • (1999) Advances in Kernel Methods , pp. 169-184
    • Joachims, T.1
  • 14
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: support vector machines for large-scale regression problems
    • Collobert R., Bengio S. SVMTorch: support vector machines for large-scale regression problems. J. Mach. Learn. 2001, 1(2):143-160.
    • (2001) J. Mach. Learn. , vol.1 , Issue.2 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 15
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 17
    • 0038647819 scopus 로고    scopus 로고
    • An iterative algorithm learning the maximal margin classifier
    • Franc V., Hlaváč V. An iterative algorithm learning the maximal margin classifier. Pattern Recogn. 2003, 36(9):1985-1996.
    • (2003) Pattern Recogn. , vol.36 , Issue.9 , pp. 1985-1996
    • Franc, V.1    Hlaváč, V.2
  • 20
    • 57749189368 scopus 로고    scopus 로고
    • Nonparallel plane proximal classifier
    • Ghorai S., Mukherjee A., Dutta P.K. Nonparallel plane proximal classifier. Signal Process. 2009, 89(4):510-522.
    • (2009) Signal Process. , vol.89 , Issue.4 , pp. 510-522
    • Ghorai, S.1    Mukherjee, A.2    Dutta, P.K.3
  • 21
    • 69249202291 scopus 로고    scopus 로고
    • Newton's method for nonparallel plane proximal classifier with unity norm hyperplanes
    • Ghorai S., Dutta P.K., Mukherjee A. Newton's method for nonparallel plane proximal classifier with unity norm hyperplanes. Signal Process. 2010, 90(1):93-104.
    • (2010) Signal Process. , vol.90 , Issue.1 , pp. 93-104
    • Ghorai, S.1    Dutta, P.K.2    Mukherjee, A.3
  • 22
    • 48649097170 scopus 로고    scopus 로고
    • Application of smoothing technique on twin support vector machines
    • Kumar M.A., Gopal M. Application of smoothing technique on twin support vector machines. Pattern Recogn. Lett. 2008, 29(13):1842-1848.
    • (2008) Pattern Recogn. Lett. , vol.29 , Issue.13 , pp. 1842-1848
    • Kumar, M.A.1    Gopal, M.2
  • 23
    • 60249095678 scopus 로고    scopus 로고
    • Least squares twin support vector machines for pattern classification
    • Kumar M.A., Gopal M. Least squares twin support vector machines for pattern classification. Expert Syst. Appl. 2009, 36(4):7535-7543.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.4 , pp. 7535-7543
    • Kumar, M.A.1    Gopal, M.2
  • 25
    • 19944407892 scopus 로고    scopus 로고
    • ε{lunate}-SSVR: a smooth support vector machine for ε{lunate}-insensitive regression
    • Lee Y.-J., Hsieh W.-F., Huang C.-M. ε{lunate}-SSVR: a smooth support vector machine for ε{lunate}-insensitive regression. IEEE Trans. Knowl. Data Eng. 2005, 17(5):678-685.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.5 , pp. 678-685
    • Lee, Y.-J.1    Hsieh, W.-F.2    Huang, C.-M.3
  • 26
    • 10244219830 scopus 로고    scopus 로고
    • A heuristic training for support vector regression
    • Wang W., Xu Z. A heuristic training for support vector regression. Neurocomputing 2004, 61:259-275.
    • (2004) Neurocomputing , vol.61 , pp. 259-275
    • Wang, W.1    Xu, Z.2
  • 27
    • 0242288816 scopus 로고    scopus 로고
    • A geometric approach to support vector regression
    • Bi J., Bennett K.P. A geometric approach to support vector regression. Neurocomputing 2003, 55:79-108.
    • (2003) Neurocomputing , vol.55 , pp. 79-108
    • Bi, J.1    Bennett, K.P.2
  • 28
    • 76849100708 scopus 로고    scopus 로고
    • TSVR: an efficient twin support vector machine for regression
    • Peng X. TSVR: an efficient twin support vector machine for regression. Neural Networks 2010, 23(3):365-372.
    • (2010) Neural Networks , vol.23 , Issue.3 , pp. 365-372
    • Peng, X.1
  • 30
    • 70649100043 scopus 로고    scopus 로고
    • New support vector algorithms with parameteric insensitive/margin model
    • Hao P.-Y. New support vector algorithms with parameteric insensitive/margin model. Neural Networks 2010, 23(1):60-73.
    • (2010) Neural Networks , vol.23 , Issue.1 , pp. 60-73
    • Hao, P.-Y.1
  • 31
    • 0001500115 scopus 로고
    • Functions of positive and negative type and the connection with the theory of integral equations
    • Mercer J. Functions of positive and negative type and the connection with the theory of integral equations. Philos. Trans. R. Soc. Lond. A 1909, 209:415-446.
    • (1909) Philos. Trans. R. Soc. Lond. A , vol.209 , pp. 415-446
    • Mercer, J.1
  • 32
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C.W., Lin C.J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks 2002, 13:415-425.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 33
    • 0041589566 scopus 로고    scopus 로고
    • Support vector interval regression networks for interval regression analysis
    • Jeng J.-T., Chuang C.-C., Su S.-F. Support vector interval regression networks for interval regression analysis. Fuzzy Sets Syst. 2003, 138(2):283-300.
    • (2003) Fuzzy Sets Syst. , vol.138 , Issue.2 , pp. 283-300
    • Jeng, J.-T.1    Chuang, C.-C.2    Su, S.-F.3
  • 34
    • 33644972832 scopus 로고    scopus 로고
    • Support vector interval regression machine for crisp input and output data
    • Hwang C., Hong D.H., Seok K.H. Support vector interval regression machine for crisp input and output data. Fuzzy Sets Syst. 2006, 157(8):1114-1125.
    • (2006) Fuzzy Sets Syst. , vol.157 , Issue.8 , pp. 1114-1125
    • Hwang, C.1    Hong, D.H.2    Seok, K.H.3
  • 35
    • 67649968190 scopus 로고    scopus 로고
    • Interval regression analysis using support vector networks
    • Hao P.-Y. Interval regression analysis using support vector networks. Fuzzy Sets Syst. 2009, 160(17):2466-2485.
    • (2009) Fuzzy Sets Syst. , vol.160 , Issue.17 , pp. 2466-2485
    • Hao, P.-Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.