-
3
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining Knowl. Discovery 1998, 2(2):121-167.
-
(1998)
Data Mining Knowl. Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
5
-
-
0030673582
-
-
Training support vector machines: An application to face detection, in: Proceedings of IEEE Computer Vision and Pattern Recognition, San Juan, Puerto Rico
-
E. Osuna, R. Freund, F. Girosi, Training support vector machines: An application to face detection, in: Proceedings of IEEE Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 1997, pp. 130-136.
-
(1997)
, pp. 130-136
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
6
-
-
84957069814
-
-
Text categorization with support vector machines: learning with many relevant features, in: European Conference on Machine Learning No. 10, Chemnitz, Germany
-
T. Joachims, C. Ndellec, C. Rouveriol, Text categorization with support vector machines: learning with many relevant features, in: European Conference on Machine Learning No. 10, Chemnitz, Germany, 1998, pp. 137-142.
-
(1998)
, pp. 137-142
-
-
Joachims, T.1
Ndellec, C.2
Rouveriol, C.3
-
7
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data by using support vector machine
-
Brown M.P.S., Grundy W.N., Lin D., et al. Knowledge-based analysis of microarray gene expression data by using support vector machine. Proc. Natl. Acad. Sci. USA 2000, 97(1):262-267.
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, Issue.1
, pp. 262-267
-
-
Brown, M.P.S.1
Grundy, W.N.2
Lin, D.3
-
8
-
-
0038104242
-
Joint time-frequency-space classification of EEG in a brain-computer interface application
-
Ebrahimi T., Garcia G.N., Vesin J.M. Joint time-frequency-space classification of EEG in a brain-computer interface application. J. Appl. Signal Process. 2003, 1(7):713-729.
-
(2003)
J. Appl. Signal Process.
, vol.1
, Issue.7
, pp. 713-729
-
-
Ebrahimi, T.1
Garcia, G.N.2
Vesin, J.M.3
-
9
-
-
83955160838
-
-
Support vector machine for regression and applications to financial forecasting, in: International Joint Conference on Neural Networks, IEEE-INNS-ENNS, Como, Italy
-
H. Ince, T.B. Trafalis, Support vector machine for regression and applications to financial forecasting, in: International Joint Conference on Neural Networks, IEEE-INNS-ENNS, Como, Italy, 2002.
-
(2002)
-
-
Ince, H.1
Trafalis, T.B.2
-
10
-
-
34249753618
-
Support vector networks
-
Cortes C., Vapnik V.N. Support vector networks. Mach. Learn. 1995, 20:273-297.
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.N.2
-
11
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
MIT Press, Cambridge, MA, B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.)
-
Platt J. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods-Support Vector Learning 1999, 185-208. MIT Press, Cambridge, MA. B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.).
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
12
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
Keerthi S.S., Shevade S.K., Bhattacharyya C., Murthy K.R.K. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Comput. 2001, 13(3):637-649.
-
(2001)
Neural Comput.
, vol.13
, Issue.3
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
13
-
-
0002714543
-
Making large-scale SVM learning practical
-
MIT Press, Cambridge, MA, B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.)
-
Joachims T. Making large-scale SVM learning practical. Advances in Kernel Methods 1999, 169-184. MIT Press, Cambridge, MA. B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.).
-
(1999)
Advances in Kernel Methods
, pp. 169-184
-
-
Joachims, T.1
-
14
-
-
0000913324
-
SVMTorch: support vector machines for large-scale regression problems
-
Collobert R., Bengio S. SVMTorch: support vector machines for large-scale regression problems. J. Mach. Learn. 2001, 1(2):143-160.
-
(2001)
J. Mach. Learn.
, vol.1
, Issue.2
, pp. 143-160
-
-
Collobert, R.1
Bengio, S.2
-
15
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
16
-
-
0001874815
-
Least squares support vector machine classifiers: a large scale algorithm
-
Suykens J.A.K., Lukas L., van Dooren P., De Moor B., Vandewalle J. Least squares support vector machine classifiers: a large scale algorithm. Proceedings of European Conference of Circuit Theory Design 1999, 839-842.
-
(1999)
Proceedings of European Conference of Circuit Theory Design
, pp. 839-842
-
-
Suykens, J.A.K.1
Lukas, L.2
van Dooren, P.3
De Moor, B.4
Vandewalle, J.5
-
17
-
-
0038647819
-
An iterative algorithm learning the maximal margin classifier
-
Franc V., Hlaváč V. An iterative algorithm learning the maximal margin classifier. Pattern Recogn. 2003, 36(9):1985-1996.
-
(2003)
Pattern Recogn.
, vol.36
, Issue.9
, pp. 1985-1996
-
-
Franc, V.1
Hlaváč, V.2
-
21
-
-
69249202291
-
Newton's method for nonparallel plane proximal classifier with unity norm hyperplanes
-
Ghorai S., Dutta P.K., Mukherjee A. Newton's method for nonparallel plane proximal classifier with unity norm hyperplanes. Signal Process. 2010, 90(1):93-104.
-
(2010)
Signal Process.
, vol.90
, Issue.1
, pp. 93-104
-
-
Ghorai, S.1
Dutta, P.K.2
Mukherjee, A.3
-
22
-
-
48649097170
-
Application of smoothing technique on twin support vector machines
-
Kumar M.A., Gopal M. Application of smoothing technique on twin support vector machines. Pattern Recogn. Lett. 2008, 29(13):1842-1848.
-
(2008)
Pattern Recogn. Lett.
, vol.29
, Issue.13
, pp. 1842-1848
-
-
Kumar, M.A.1
Gopal, M.2
-
23
-
-
60249095678
-
Least squares twin support vector machines for pattern classification
-
Kumar M.A., Gopal M. Least squares twin support vector machines for pattern classification. Expert Syst. Appl. 2009, 36(4):7535-7543.
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.4
, pp. 7535-7543
-
-
Kumar, M.A.1
Gopal, M.2
-
24
-
-
0034271493
-
Improvements to the SMO algorithm for SVM regression
-
Shevade S.K., Keerthi S.S., Bhattacharyya C., et al. Improvements to the SMO algorithm for SVM regression. IEEE Trans. Neural Networks 2000, 11(5):1188-1193.
-
(2000)
IEEE Trans. Neural Networks
, vol.11
, Issue.5
, pp. 1188-1193
-
-
Shevade, S.K.1
Keerthi, S.S.2
Bhattacharyya, C.3
-
25
-
-
19944407892
-
ε{lunate}-SSVR: a smooth support vector machine for ε{lunate}-insensitive regression
-
Lee Y.-J., Hsieh W.-F., Huang C.-M. ε{lunate}-SSVR: a smooth support vector machine for ε{lunate}-insensitive regression. IEEE Trans. Knowl. Data Eng. 2005, 17(5):678-685.
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.5
, pp. 678-685
-
-
Lee, Y.-J.1
Hsieh, W.-F.2
Huang, C.-M.3
-
26
-
-
10244219830
-
A heuristic training for support vector regression
-
Wang W., Xu Z. A heuristic training for support vector regression. Neurocomputing 2004, 61:259-275.
-
(2004)
Neurocomputing
, vol.61
, pp. 259-275
-
-
Wang, W.1
Xu, Z.2
-
27
-
-
0242288816
-
A geometric approach to support vector regression
-
Bi J., Bennett K.P. A geometric approach to support vector regression. Neurocomputing 2003, 55:79-108.
-
(2003)
Neurocomputing
, vol.55
, pp. 79-108
-
-
Bi, J.1
Bennett, K.P.2
-
28
-
-
76849100708
-
TSVR: an efficient twin support vector machine for regression
-
Peng X. TSVR: an efficient twin support vector machine for regression. Neural Networks 2010, 23(3):365-372.
-
(2010)
Neural Networks
, vol.23
, Issue.3
, pp. 365-372
-
-
Peng, X.1
-
29
-
-
17444438778
-
New support vector algorithms
-
Schölkopf B., Smola A., Williamson R., Bartlett P.L. New support vector algorithms. Neural Comput. 2000, 12(5):1207-1245.
-
(2000)
Neural Comput.
, vol.12
, Issue.5
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.2
Williamson, R.3
Bartlett, P.L.4
-
30
-
-
70649100043
-
New support vector algorithms with parameteric insensitive/margin model
-
Hao P.-Y. New support vector algorithms with parameteric insensitive/margin model. Neural Networks 2010, 23(1):60-73.
-
(2010)
Neural Networks
, vol.23
, Issue.1
, pp. 60-73
-
-
Hao, P.-Y.1
-
31
-
-
0001500115
-
Functions of positive and negative type and the connection with the theory of integral equations
-
Mercer J. Functions of positive and negative type and the connection with the theory of integral equations. Philos. Trans. R. Soc. Lond. A 1909, 209:415-446.
-
(1909)
Philos. Trans. R. Soc. Lond. A
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
32
-
-
0036505670
-
A comparison of methods for multiclass support vector machines
-
Hsu C.W., Lin C.J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks 2002, 13:415-425.
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, pp. 415-425
-
-
Hsu, C.W.1
Lin, C.J.2
-
33
-
-
0041589566
-
Support vector interval regression networks for interval regression analysis
-
Jeng J.-T., Chuang C.-C., Su S.-F. Support vector interval regression networks for interval regression analysis. Fuzzy Sets Syst. 2003, 138(2):283-300.
-
(2003)
Fuzzy Sets Syst.
, vol.138
, Issue.2
, pp. 283-300
-
-
Jeng, J.-T.1
Chuang, C.-C.2
Su, S.-F.3
-
34
-
-
33644972832
-
Support vector interval regression machine for crisp input and output data
-
Hwang C., Hong D.H., Seok K.H. Support vector interval regression machine for crisp input and output data. Fuzzy Sets Syst. 2006, 157(8):1114-1125.
-
(2006)
Fuzzy Sets Syst.
, vol.157
, Issue.8
, pp. 1114-1125
-
-
Hwang, C.1
Hong, D.H.2
Seok, K.H.3
-
35
-
-
67649968190
-
Interval regression analysis using support vector networks
-
Hao P.-Y. Interval regression analysis using support vector networks. Fuzzy Sets Syst. 2009, 160(17):2466-2485.
-
(2009)
Fuzzy Sets Syst.
, vol.160
, Issue.17
, pp. 2466-2485
-
-
Hao, P.-Y.1
|