-
4
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Müller K.R., Mika S., Rätsch G., Tsuda K., and Schölkopf B. An introduction to kernel-based learning algorithms. IEEE Trans. Neural Networks 12 2 (2001) 181-201
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, Issue.2
, pp. 181-201
-
-
Müller, K.R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
6
-
-
35448983957
-
-
E.E. Osuna, R. Freund, F. Girosi, Support vector machines: training and applications, Technical Report AIM1602, MIT Artificial Intelligence Laboratory, Cambridge, MA, 1997.
-
-
-
-
7
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Schölkopf B., Burges C.J.C., and Smola A.J. (Eds), MIT Press, Cambridge, MA
-
Platt J. Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds). Advances in Kernel Methods-Support Vector Learning (1999), MIT Press, Cambridge, MA 185-208
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
8
-
-
35448996532
-
-
K.P. Bennett, E. Bredensteiner, Geometry in learning, Web Manuscript, 〈http://www.rpi.edu/∼bennek〉. September 1996. Also in Geometry at Work, C. Gorini (Ed.), Mathematical Association of America, Washington, DC, 2000, pp. 132-145.
-
-
-
-
9
-
-
35448960809
-
-
K.P. Bennett, E.J. Bredensteiner, Duality and geometry in SVM classifiers, in: P. Langley (Ed.), Proceedings of the 17th International Conference on Machine Learning, Morgan Kaufmann, Los Altos, CA, 2000, pp. 57-64. Also available at: 〈http://www.rpi.edu/∼bennek〉.
-
-
-
-
10
-
-
0033640690
-
A fast iterative nearest point algorithm for support vector machine classifier design
-
Keerthi S.S., Shevade S.K., Bhattacharyya C., et al. A fast iterative nearest point algorithm for support vector machine classifier design. IEEE Trans. Neural Networks 11 1 (2000) 124-136
-
(2000)
IEEE Trans. Neural Networks
, vol.11
, Issue.1
, pp. 124-136
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
-
12
-
-
0002274728
-
An iterative procedure for computing the minimum of a quadratic form on a convex set
-
Gilbert E.G. An iterative procedure for computing the minimum of a quadratic form on a convex set. SIAM J. Control 4 1 (1966) 61-79
-
(1966)
SIAM J. Control
, vol.4
, Issue.1
, pp. 61-79
-
-
Gilbert, E.G.1
-
14
-
-
0036739354
-
Kernel projection algorithm for large-scale SVM problems
-
Wang J., Tao Q., and Wang J. Kernel projection algorithm for large-scale SVM problems. J. Comput. Sci. Technol. 17 5 (2002) 556-564
-
(2002)
J. Comput. Sci. Technol.
, vol.17
, Issue.5
, pp. 556-564
-
-
Wang, J.1
Tao, Q.2
Wang, J.3
-
16
-
-
0038647819
-
An iterative algorithm learning the maximal margin classifier
-
Franc V., and Hlaváč V. An iterative algorithm learning the maximal margin classifier. Pattern Recognition 36 (2003) 1985-1996
-
(2003)
Pattern Recognition
, vol.36
, pp. 1985-1996
-
-
Franc, V.1
Hlaváč, V.2
-
17
-
-
0038411822
-
Sravnitelnyj analiz algoritmov sinteza linejnogo reshajushchego pravila dlja proverki slozhnych gipotez (Comparative analysis of algorithms synthesising linear decision rule for analysis of complex hypotheses)
-
(in Russian)
-
Schlesinger M.I., Kalmykov V.G., and Suchorukov A.A. Sravnitelnyj analiz algoritmov sinteza linejnogo reshajushchego pravila dlja proverki slozhnych gipotez (Comparative analysis of algorithms synthesising linear decision rule for analysis of complex hypotheses). Automatika 1 (1981) 3-9 (in Russian)
-
(1981)
Automatika
, vol.1
, pp. 3-9
-
-
Schlesinger, M.I.1
Kalmykov, V.G.2
Suchorukov, A.A.3
-
19
-
-
35448970194
-
-
T.T. Friess, R. Harrison, Support vector neural networks: the kernel adtron with bias and soft margin, Technical Report 725, University of Sheffield, UK, 1998.
-
-
-
-
20
-
-
34249753618
-
Support vector networks
-
Cortes C., and Vapnik V. Support vector networks. Machine Learning 20 (1995) 273-297
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
23
-
-
2942586739
-
A generalized S-K-algorithm for learning ν-SVM classifiers
-
Tao Q., Wu G.-W., and Wang J. A generalized S-K-algorithm for learning ν-SVM classifiers. Pattern Recognition Lett. 25 10 (2004) 1165-1171
-
(2004)
Pattern Recognition Lett.
, vol.25
, Issue.10
, pp. 1165-1171
-
-
Tao, Q.1
Wu, G.-W.2
Wang, J.3
-
24
-
-
0026860799
-
Robust linear programming discrimination of two linearly inseparable sets
-
Also available at 〈http://www.rpi.edu/∼bennek〉
-
Mangasarian O.L., and Bennett K.P. Robust linear programming discrimination of two linearly inseparable sets. Optim. Meth. Software 1 (1992) 23-34. http://www.rpi.edu/bennek Also available at 〈http://www.rpi.edu/∼bennek〉
-
(1992)
Optim. Meth. Software
, vol.1
, pp. 23-34
-
-
Mangasarian, O.L.1
Bennett, K.P.2
-
25
-
-
0000667930
-
Training ν-support vector classifiers: theory and algorithms
-
Chang C.C., and Lin C.J. Training ν-support vector classifiers: theory and algorithms. Neural Comput. 13 9 (2001) 2119-2147
-
(2001)
Neural Comput.
, vol.13
, Issue.9
, pp. 2119-2147
-
-
Chang, C.C.1
Lin, C.J.2
-
26
-
-
28244467848
-
Posterior probability support vector machines for unbalanced data
-
Tao Q., Wu G., Wang F.-Y., and Wang J. Posterior probability support vector machines for unbalanced data. IEEE Trans. Neural Networks 16 6 (2005) 1561-1573
-
(2005)
IEEE Trans. Neural Networks
, vol.16
, Issue.6
, pp. 1561-1573
-
-
Tao, Q.1
Wu, G.2
Wang, F.-Y.3
Wang, J.4
-
27
-
-
33947106261
-
A new fuzzy support vector machine based on the weighted margin
-
Tao Q., and Wang J. A new fuzzy support vector machine based on the weighted margin. Neural Process. Lett. 20 (2004) 139-150
-
(2004)
Neural Process. Lett.
, vol.20
, pp. 139-150
-
-
Tao, Q.1
Wang, J.2
|