메뉴 건너뛰기




Volumn 23, Issue 1, 2010, Pages 60-73

New support vector algorithms with parametric insensitive/margin model

Author keywords

Classification; Heteroscedastic noise model; Parametric insensitive model; Parametric margin model; Regression estimation; Support vector machines (SVMs)

Indexed keywords

CLASSIFICATION; HETEROSCEDASTIC NOISE; HETEROSCEDASTIC NOISE MODEL; PARAMETRIC-MARGIN MODEL; REGRESSION ESTIMATION;

EID: 70649100043     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2009.08.001     Document Type: Article
Times cited : (115)

References (28)
  • 1
    • 70649092606 scopus 로고    scopus 로고
    • Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. Univ. Irvine, CA: California, Dept. Inform. Comput. Sci., [Online]. Available: http://kdd.ics.uci.edu/
    • Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. Univ. Irvine, CA: California, Dept. Inform. Comput. Sci., [Online]. Available: http://kdd.ics.uci.edu/
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 2 (1998) 955-974
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 955-974
    • Burges, C.J.C.1
  • 9
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C.W., and Lin C.J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 13 (2002) 415-425
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 10
    • 33644972832 scopus 로고    scopus 로고
    • Support vector interval regression machine for crisp input and output data
    • Hwang C., Hong D.H., and Seok K.H. Support vector interval regression machine for crisp input and output data. Fuzzy Sets and Systems 157 (2006) 1114-1125
    • (2006) Fuzzy Sets and Systems , vol.157 , pp. 1114-1125
    • Hwang, C.1    Hong, D.H.2    Seok, K.H.3
  • 11
    • 0041589566 scopus 로고    scopus 로고
    • Support vector interval regression networks for interval regression analysis
    • Jeng J.-T., Chuang C.-C., and Su S.-F. Support vector interval regression networks for interval regression analysis. Fuzzy Sets and Systems 138 (2003) 283-300
    • (2003) Fuzzy Sets and Systems , vol.138 , pp. 283-300
    • Jeng, J.-T.1    Chuang, C.-C.2    Su, S.-F.3
  • 16
    • 0004042460 scopus 로고
    • PPROBEN 1 - A set of neural network benchmark problems and benchmarking rules
    • Technical report 21/94. D-76128, Karlsruhe, Germany: Fakultat fur Informatik, Universitat Karlsruhe. Anonymous
    • Prechelt, L. (1994). PPROBEN 1 - A set of neural network benchmark problems and benchmarking rules. Technical report 21/94. D-76128, Karlsruhe, Germany: Fakultat fur Informatik, Universitat Karlsruhe. Anonymous FTP: ftp://pub/papers/techreports/1994/1994-21.ps.Zon ftp.ira.uka.de
    • (1994)
    • Prechelt, L.1
  • 20
    • 50249155939 scopus 로고    scopus 로고
    • Shrinking the tube: a new support vector regression algorithm
    • Kearns M.S., Solla S.A., and Cohn D.A. (Eds), MIT Press, Cambridge, MA
    • Schölkopf B., Bartlett P.L., Smola A., and Williamson R. Shrinking the tube: a new support vector regression algorithm. In: Kearns M.S., Solla S.A., and Cohn D.A. (Eds). Advances in neural information processing systems Vol. 11 (1999), MIT Press, Cambridge, MA 330-336
    • (1999) Advances in neural information processing systems , vol.11 , pp. 330-336
    • Schölkopf, B.1    Bartlett, P.L.2    Smola, A.3    Williamson, R.4
  • 22
    • 0001995852 scopus 로고
    • Some aspects of the spline smoothing approach to non-parametric regression curve fitting
    • Silverman B.W. Some aspects of the spline smoothing approach to non-parametric regression curve fitting. Journal of the Royal Statistical Society 47 (1985) 1-52
    • (1985) Journal of the Royal Statistical Society , vol.47 , pp. 1-52
    • Silverman, B.W.1
  • 23
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operations and support vector kernels
    • Smola A.J., Schölkopf B., and Müller K.R. The connection between regularization operations and support vector kernels. Neural Networks 11 (1998) 637-649
    • (1998) Neural Networks , vol.11 , pp. 637-649
    • Smola, A.J.1    Schölkopf, B.2    Müller, K.R.3
  • 27
    • 0030585112 scopus 로고    scopus 로고
    • Using neural networks to model conditional multivariate densities
    • Williams P.M. Using neural networks to model conditional multivariate densities. Neural Computation 8 (1996) 843-854
    • (1996) Neural Computation , vol.8 , pp. 843-854
    • Williams, P.M.1
  • 28
    • 4344681939 scopus 로고    scopus 로고
    • Doubly penalized likelihood estimator in heteroscedastic regression
    • Yunn M., and Wahba D. Doubly penalized likelihood estimator in heteroscedastic regression. Statistics & Probability Letters 69 (2004) 11-20
    • (2004) Statistics & Probability Letters , vol.69 , pp. 11-20
    • Yunn, M.1    Wahba, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.