-
1
-
-
70649092606
-
-
Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. Univ. Irvine, CA: California, Dept. Inform. Comput. Sci., [Online]. Available: http://kdd.ics.uci.edu/
-
Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. Univ. Irvine, CA: California, Dept. Inform. Comput. Sci., [Online]. Available: http://kdd.ics.uci.edu/
-
-
-
-
2
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Haussler D. (Ed), ACM Press, Pittsburgh, PA
-
Boser B.E., Guyon I.M., and Vapnik V.N. A training algorithm for optimal margin classifiers. In: Haussler D. (Ed). Proceedings of the 5th annual ACM workshop on computational learning theory (1992), ACM Press, Pittsburgh, PA 144-152
-
(1992)
Proceedings of the 5th annual ACM workshop on computational learning theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
3
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 2 (1998) 955-974
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 955-974
-
-
Burges, C.J.C.1
-
5
-
-
1542680961
-
Heteroscedastic kernel ridge regression
-
Cawley G.C., Talbot N.L.C., Foxall R.J., Dorling S.R., and Mandic D.P. Heteroscedastic kernel ridge regression. Neurocomputing 57 (2004) 105-124
-
(2004)
Neurocomputing
, vol.57
, pp. 105-124
-
-
Cawley, G.C.1
Talbot, N.L.C.2
Foxall, R.J.3
Dorling, S.R.4
Mandic, D.P.5
-
8
-
-
84899013173
-
Support vector regression machines
-
Drucker H., Burges C.J.C., Kaufman L., Smola A.J., and Vapnik V.N. Support vector regression machines. Advances in neural information processing systems vol. 9 (1996) 155-161
-
(1996)
Advances in neural information processing systems
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.C.2
Kaufman, L.3
Smola, A.J.4
Vapnik, V.N.5
-
9
-
-
0036505670
-
A comparison of methods for multiclass support vector machines
-
Hsu C.W., and Lin C.J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 13 (2002) 415-425
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, pp. 415-425
-
-
Hsu, C.W.1
Lin, C.J.2
-
10
-
-
33644972832
-
Support vector interval regression machine for crisp input and output data
-
Hwang C., Hong D.H., and Seok K.H. Support vector interval regression machine for crisp input and output data. Fuzzy Sets and Systems 157 (2006) 1114-1125
-
(2006)
Fuzzy Sets and Systems
, vol.157
, pp. 1114-1125
-
-
Hwang, C.1
Hong, D.H.2
Seok, K.H.3
-
11
-
-
0041589566
-
Support vector interval regression networks for interval regression analysis
-
Jeng J.-T., Chuang C.-C., and Su S.-F. Support vector interval regression networks for interval regression analysis. Fuzzy Sets and Systems 138 (2003) 283-300
-
(2003)
Fuzzy Sets and Systems
, vol.138
, pp. 283-300
-
-
Jeng, J.-T.1
Chuang, C.-C.2
Su, S.-F.3
-
12
-
-
34547984865
-
Most likely heteroscedastic Gaussian process regression
-
Kersting, K., Plagemann, C., Pfaff, P., & Burgard, W. (2007). Most likely heteroscedastic Gaussian process regression. In Proceedings of the 24th international conference on machine learning (pp. 393-400)
-
(2007)
Proceedings of the 24th international conference on machine learning
, pp. 393-400
-
-
Kersting, K.1
Plagemann, C.2
Pfaff, P.3
Burgard, W.4
-
14
-
-
0003612091
-
-
Ellis Horwood, Online, Available
-
Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine learning, neural and statistical classification. Ellis Horwood, [Online]. Available: http://www.maths.leeds.ac.uk/~charles/statlog/
-
(1994)
Machine learning, neural and statistical classification
-
-
Michie, D.1
Spiegelhalter, D.J.2
Taylor, C.C.3
-
15
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Müller K.R., Mika S., Ratsch G., Tsuda K., and Schölkopf B. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks 12 2 (2001) 181-201
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.2
, pp. 181-201
-
-
Müller, K.R.1
Mika, S.2
Ratsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
16
-
-
0004042460
-
PPROBEN 1 - A set of neural network benchmark problems and benchmarking rules
-
Technical report 21/94. D-76128, Karlsruhe, Germany: Fakultat fur Informatik, Universitat Karlsruhe. Anonymous
-
Prechelt, L. (1994). PPROBEN 1 - A set of neural network benchmark problems and benchmarking rules. Technical report 21/94. D-76128, Karlsruhe, Germany: Fakultat fur Informatik, Universitat Karlsruhe. Anonymous FTP: ftp://pub/papers/techreports/1994/1994-21.ps.Zon ftp.ira.uka.de
-
(1994)
-
-
Prechelt, L.1
-
17
-
-
85118436573
-
Extracting support data for a given task
-
Fayyad U.M., and Uthurusamy R. (Eds), AAAI Press, Menlo Park, CA
-
Schölkopf B., Burges C.J.C., and Vapnik V.N. Extracting support data for a given task. In: Fayyad U.M., and Uthurusamy R. (Eds). Proceedings, first international conference on knowledge discovery and data mining (1995), AAAI Press, Menlo Park, CA
-
(1995)
Proceedings, first international conference on knowledge discovery and data mining
-
-
Schölkopf, B.1
Burges, C.J.C.2
Vapnik, V.N.3
-
18
-
-
0003798627
-
-
MIT Press, Cambridge, MA
-
Schölkopf B., Burges C.J.C., and Smola A.J. Advances in kernel methods-Support vector learning (1999), MIT Press, Cambridge, MA
-
(1999)
Advances in kernel methods-Support vector learning
-
-
Schölkopf, B.1
Burges, C.J.C.2
Smola, A.J.3
-
19
-
-
0032594954
-
Input space vs. feature space in kernel-based methods
-
Schölkopf B., Mika S., Burges C.J.C., Knirsch P., Müller K.R., Rätsch G., et al. Input space vs. feature space in kernel-based methods. IEEE Transactions on Neural Networks 10 5 (1999) 1000-1017
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.J.C.3
Knirsch, P.4
Müller, K.R.5
Rätsch, G.6
-
20
-
-
50249155939
-
Shrinking the tube: a new support vector regression algorithm
-
Kearns M.S., Solla S.A., and Cohn D.A. (Eds), MIT Press, Cambridge, MA
-
Schölkopf B., Bartlett P.L., Smola A., and Williamson R. Shrinking the tube: a new support vector regression algorithm. In: Kearns M.S., Solla S.A., and Cohn D.A. (Eds). Advances in neural information processing systems Vol. 11 (1999), MIT Press, Cambridge, MA 330-336
-
(1999)
Advances in neural information processing systems
, vol.11
, pp. 330-336
-
-
Schölkopf, B.1
Bartlett, P.L.2
Smola, A.3
Williamson, R.4
-
21
-
-
17444438778
-
New support vector algorithms
-
Schölkopf B., Smola A.J., Williamson R., and Bartlett P.L. New support vector algorithms. Neural Computation 12 5 (2000) 1207-1245
-
(2000)
Neural Computation
, vol.12
, Issue.5
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.J.2
Williamson, R.3
Bartlett, P.L.4
-
22
-
-
0001995852
-
Some aspects of the spline smoothing approach to non-parametric regression curve fitting
-
Silverman B.W. Some aspects of the spline smoothing approach to non-parametric regression curve fitting. Journal of the Royal Statistical Society 47 (1985) 1-52
-
(1985)
Journal of the Royal Statistical Society
, vol.47
, pp. 1-52
-
-
Silverman, B.W.1
-
23
-
-
0032098361
-
The connection between regularization operations and support vector kernels
-
Smola A.J., Schölkopf B., and Müller K.R. The connection between regularization operations and support vector kernels. Neural Networks 11 (1998) 637-649
-
(1998)
Neural Networks
, vol.11
, pp. 637-649
-
-
Smola, A.J.1
Schölkopf, B.2
Müller, K.R.3
-
27
-
-
0030585112
-
Using neural networks to model conditional multivariate densities
-
Williams P.M. Using neural networks to model conditional multivariate densities. Neural Computation 8 (1996) 843-854
-
(1996)
Neural Computation
, vol.8
, pp. 843-854
-
-
Williams, P.M.1
-
28
-
-
4344681939
-
Doubly penalized likelihood estimator in heteroscedastic regression
-
Yunn M., and Wahba D. Doubly penalized likelihood estimator in heteroscedastic regression. Statistics & Probability Letters 69 (2004) 11-20
-
(2004)
Statistics & Probability Letters
, vol.69
, pp. 11-20
-
-
Yunn, M.1
Wahba, D.2
|