메뉴 건너뛰기




Volumn 160, Issue 17, 2009, Pages 2466-2485

Interval regression analysis using support vector networks

Author keywords

Interval regression analysis; Quadratic programming; Support vector machines (SVMs); Support vector regression machines

Indexed keywords

ACCURACY CONTROL; APRIORI; ARBITRARY SHAPE; CRISP DATA; DATA POINTS; FUNCTION ESTIMATION; HETEROSCEDASTIC; INPUT AND OUTPUTS; INPUT VALUES; INTERVAL MODELS; INTERVAL REGRESSION; INTERVAL REGRESSION ANALYSIS; LOSS FUNCTIONS; LOWER BOUNDS; MODEL FUNCTIONS; MODEL-FREE METHOD; NONLINEAR REGRESSION MODELS; PATTERN CLASSIFICATION; SUPPORT VECTOR; SUPPORT VECTOR NETWORKS; SUPPORT VECTOR REGRESSION MACHINES; SUPPORT VECTOR REGRESSIONS; TRAINING ERRORS; UPPER BOUND;

EID: 67649968190     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2008.10.012     Document Type: Article
Times cited : (61)

References (36)
  • 1
    • 0022026102 scopus 로고
    • Fuzzy linear regression and its applications to forecasting in uncertain environment
    • Heshmaty B., and Kandel A. Fuzzy linear regression and its applications to forecasting in uncertain environment. Fuzzy Sets and Systems 15 (1985) 159-191
    • (1985) Fuzzy Sets and Systems , vol.15 , pp. 159-191
    • Heshmaty, B.1    Kandel, A.2
  • 4
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Kurt H. Approximation capabilities of multilayer feedforward networks. Neural Networks 4 (1991) 251-257
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Kurt, H.1
  • 5
    • 0026304916 scopus 로고
    • An extension of the bp algorithm to interval input vectors
    • Singapore
    • H. Ishibuchi, H. Tanaka, An extension of the bp algorithm to interval input vectors, in: Proc. IJCNN'91, Vol. 2, Singapore, 1991, pp. 1588-1593.
    • (1991) Proc. IJCNN'91 , vol.2 , pp. 1588-1593
    • Ishibuchi, H.1    Tanaka, H.2
  • 6
    • 0028406626 scopus 로고
    • Neural networks with interval weights for nonlinear mapping of interval vector
    • Kwon K., Ishibuchi H., and Tanaka H. Neural networks with interval weights for nonlinear mapping of interval vector. IEICE Transactions on Information Systems 77 (1994) 409-417
    • (1994) IEICE Transactions on Information Systems , vol.77 , pp. 409-417
    • Kwon, K.1    Ishibuchi, H.2    Tanaka, H.3
  • 7
    • 0342961074 scopus 로고    scopus 로고
    • Fuzzy regression with radial basis function network
    • Cheng C.B., and Lee E.S. Fuzzy regression with radial basis function network. Fuzzy Sets and Systems 119 (2001) 291-301
    • (2001) Fuzzy Sets and Systems , vol.119 , pp. 291-301
    • Cheng, C.B.1    Lee, E.S.2
  • 11
    • 0041589566 scopus 로고    scopus 로고
    • Support vector interval regression networks for interval regression analysis
    • Jeng J.-T., Chuang C.-C., and Su S.-F. Support vector interval regression networks for interval regression analysis. Fuzzy Sets and Systems 138 (2003) 283-300
    • (2003) Fuzzy Sets and Systems , vol.138 , pp. 283-300
    • Jeng, J.-T.1    Chuang, C.-C.2    Su, S.-F.3
  • 14
    • 33644972832 scopus 로고    scopus 로고
    • Support vector interval regression machine for crisp input and output data
    • Hwang C., Hong D.H., and Seok K.H. Support vector interval regression machine for crisp input and output data. Fuzzy Sets and Systems 157 (2006) 1114-1125
    • (2006) Fuzzy Sets and Systems , vol.157 , pp. 1114-1125
    • Hwang, C.1    Hong, D.H.2    Seok, K.H.3
  • 15
    • 38249035267 scopus 로고
    • Fuzzy data analysis by possibilistic linear models
    • Tanaka H. Fuzzy data analysis by possibilistic linear models. Fuzzy Sets and Systems 24 (1987) 363-375
    • (1987) Fuzzy Sets and Systems , vol.24 , pp. 363-375
    • Tanaka, H.1
  • 16
    • 0032205733 scopus 로고    scopus 로고
    • Interval regression analysis by quadratic programming approach
    • Tanaka H., and Lee H. Interval regression analysis by quadratic programming approach. IEEE Transactions on Fuzzy Systems 6 4 (1998) 473-481
    • (1998) IEEE Transactions on Fuzzy Systems , vol.6 , Issue.4 , pp. 473-481
    • Tanaka, H.1    Lee, H.2
  • 17
    • 0028407151 scopus 로고
    • Fuzzy linear regression with fuzzy intervals
    • Peters G. Fuzzy linear regression with fuzzy intervals. Fuzzy Sets and Systems 63 (1994) 45-54
    • (1994) Fuzzy Sets and Systems , vol.63 , pp. 45-54
    • Peters, G.1
  • 18
    • 0004293209 scopus 로고
    • Prentice-Hall, Englewood Cliffs, NJ
    • Moore R.E. Interval Analysis (1966), Prentice-Hall, Englewood Cliffs, NJ
    • (1966) Interval Analysis
    • Moore, R.E.1
  • 20
    • 0001557773 scopus 로고
    • Fuzzy regression analysis using neural networks
    • Ishibuchi H., and Tanaka H. Fuzzy regression analysis using neural networks. Fuzzy Sets and Systems 50 (1992) 57-65
    • (1992) Fuzzy Sets and Systems , vol.50 , pp. 57-65
    • Ishibuchi, H.1    Tanaka, H.2
  • 24
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Vapnik V., Golowich S., and Smola A. Support vector method for function approximation, regression estimation, and signal processing. Adv. Neural Inf. Process. Syst. 9 (1996) 281-287
    • (1996) Adv. Neural Inf. Process. Syst. , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 27
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predicting protein-protein interactions
    • Ben-Hur A., and Noble W.S. Kernel methods for predicting protein-protein interactions. Bioinformatics 21 Suppl. 1 (2005) i38-i46
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Ben-Hur, A.1    Noble, W.S.2
  • 28
    • 4444273377 scopus 로고    scopus 로고
    • Protein homology detection using string alignment kernels
    • Saigo H., Vert J.-P., Ueda N., and Akutsu T. Protein homology detection using string alignment kernels. Bioinformatics 20 11 (2004) 1682-1689
    • (2004) Bioinformatics , vol.20 , Issue.11 , pp. 1682-1689
    • Saigo, H.1    Vert, J.-P.2    Ueda, N.3    Akutsu, T.4
  • 29
    • 0001995852 scopus 로고
    • Some aspects of the spline smoothing approach to non-parametric regression curve fitting
    • Silverman B.W. Some aspects of the spline smoothing approach to non-parametric regression curve fitting. Journal of the Royal Statistical Society 47 (1985) 1-52
    • (1985) Journal of the Royal Statistical Society , vol.47 , pp. 1-52
    • Silverman, B.W.1
  • 32
    • 0003408496 scopus 로고    scopus 로고
    • University of California, Department of Information and Computer Science, Irvine, CA, Online, Available
    • C.L. Blake, C.J. Merz, UCI repository of machine learning databases, University of California, Department of Information and Computer Science, Irvine, CA, 1998 [Online]. Available: 〈http://kdd.ics.uci.edu/〉.
    • (1998) UCI repository of machine learning databases
    • Blake, C.L.1    Merz, C.J.2
  • 35
    • 0032142658 scopus 로고    scopus 로고
    • Robust interval regression analysis using neural networks
    • Huang L., Zhang B.L., and Huang Q. Robust interval regression analysis using neural networks. Fuzzy Sets and Systems 97 (1998) 337-347
    • (1998) Fuzzy Sets and Systems , vol.97 , pp. 337-347
    • Huang, L.1    Zhang, B.L.2    Huang, Q.3
  • 36
    • 0027912844 scopus 로고
    • An architecture of neural networks with interval weights and its application to fuzzy regression analysis
    • Ishibuchi H., Tanaka H., and Okada H. An architecture of neural networks with interval weights and its application to fuzzy regression analysis. Fuzzy Sets and Systems 57 (1993) 27-39
    • (1993) Fuzzy Sets and Systems , vol.57 , pp. 27-39
    • Ishibuchi, H.1    Tanaka, H.2    Okada, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.