메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1-10

Improving sequential feature selection methods'performance by means of hybridization

Author keywords

Classification performance; Feature selection; Hybrid methods; Sequential search; Statistical pattern recognition; Subset search

Indexed keywords

FEATURE EXTRACTION;

EID: 84858821237     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.2316/p.2010.689-001     Document Type: Conference Paper
Times cited : (7)

References (35)
  • 1
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • DOI 10.1109/TKDE.2005.66
    • H. Liu and L. Yu, Toward integrating feature selection algorithms for classification and clustering, IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 3, 491-502, 2005. (Pubitemid 40495592)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 3
    • 0344609892 scopus 로고    scopus 로고
    • Special issue on variable and feature selection
    • Special issue on variable and feature selection, Journal of Machine Learning Research. http://www.jmlr.org/papers/special/feature.html, 2003.
    • (2003) Journal of Machine Learning Research
  • 4
    • 33845300232 scopus 로고    scopus 로고
    • Feature selection algorithms in classification problems: An experimental evaluation
    • DOI 10.1080/10556780600881910, PII Q1ML5528268Q830G
    • A. Salappa, M. Doumpos, and C. Zopounidis, Feature selection algorithms in classification problems: An experimental evaluation, Optimization Methods and Software, vol. 22, no. 1, 199-212, 2007. (Pubitemid 44878967)
    • (2007) Optimization Methods and Software , vol.22 , Issue.1 , pp. 199-212
    • Salappa, A.1    Doumpos, M.2    Zopounidis, C.3
  • 7
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi and G. John, Wrappers for feature subset selection, Artificial Intelligence, vol. 97, 273-324, 1997. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 9
    • 0036532821 scopus 로고    scopus 로고
    • A hybrid filter/wrapper approach of feature selection using information theory
    • DOI 10.1016/S0031-3203(01)00084-X, PII S003132030100084X
    • M. Sebban and R. Nock, A hybrid filter/wrapper approach of feature selection using information theory, Pattern Recognition, vol. 35, 835-846, 2002. (Pubitemid 34128810)
    • (2002) Pattern Recognition , vol.35 , Issue.4 , pp. 835-846
    • Sebban, M.1    Nock, R.2
  • 11
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res., vol. 3, 1157- 1182, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 13
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of relief
    • NJ, USA: Springer-Verlag New York, Inc.
    • I. Kononenko, Estimating attributes: Analysis and extensions of relief, in ECML-94: Proc. European Conf. on Machine Learning. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1994, 171-182.
    • (1994) ECML-94: Proc. European Conf. on Machine Learning. Secaucus , pp. 171-182
    • Kononenko, I.1
  • 14
    • 0037965523 scopus 로고
    • Feature selection based on approximation of class densities by finite mixtures of special type
    • P. Pudil, J. Novovǐcov́a, N. Choakjarernwanit, and J. Kittler, Feature selection based on approximation of class densities by finite mixtures of special type, Pattern Recognition, vol. 28, 1389-1398, 1995.
    • (1995) Pattern Recognition , vol.28 , pp. 1389-1398
    • Pudil, P.1    Novovǐcov́a, J.2    Choakjarernwanit, N.3    Kittler, J.4
  • 18
    • 34250815597 scopus 로고    scopus 로고
    • Adaptive branch and bound algorithm for selecting optimal features
    • DOI 10.1016/j.patrec.2007.02.015, PII S0167865507000670
    • S. Nakariyakul and D. P. Casasent, Adaptive branch and bound algorithm for selecting optimal features, Pattern Recogn. Lett., vol. 28, no. 12, 1415-1427, 2007. (Pubitemid 46990579)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.12 , pp. 1415-1427
    • Nakariyakul, S.1    Casasent, D.P.2
  • 19
    • 84951828553 scopus 로고    scopus 로고
    • Genetic algorithms for feature selection and weighting, a review and study
    • F. Hussein, R. Ward, and N. Kharma, Genetic algorithms for feature selection and weighting, a review and study, Proc. ICDAR, vol. 00, IEEE Comp. Soc., 1240-1244, 2001.
    • (2001) Proc. ICDAR, vol. 00, IEEE Comp. Soc. , pp. 1240-1244
    • Hussein, F.1    Ward, R.2    Kharma, N.3
  • 20
    • 0035294798 scopus 로고    scopus 로고
    • Feature selection using tabu search method
    • H. Zhang and G. Sun, Feature selection using tabu search method, Pattern Recognition, vol. 35, 701-711, 2002.
    • (2002) Pattern Recognition , vol.35 , pp. 701-711
    • Zhang, H.1    Sun, G.2
  • 21
    • 33846273453 scopus 로고    scopus 로고
    • Performing feature selection with ACO
    • Springer Berlin/Heidelberg
    • R. Jensen, Performing Feature Selection with ACO, ser. Studies in Computational Intelligence. Springer Berlin/Heidelberg, 2006, vol. 34, 45-73.
    • (2006) Ser. Studies in Computational Intelligence , vol.34 , pp. 45-73
    • Jensen, R.1
  • 22
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization
    • San Francisco, CA, USA: Morgan Kaufmann Publishers Inc
    • Y. Yang and J. O. Pedersen, A comparative study on feature selection in text categorization, in ICML'97: Proc. 14th Int. Conf. on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997, 412-420.
    • (1997) ICML'97: Proc. 14th Int. Conf. on Machine Learning , pp. 412-420
    • Yang, Y.1    Pedersen, J.O.2
  • 23
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • March
    • F. Sebastiani, Machine learning in automated text categorization, ACM Computing Surveys, vol. 34, no. 1, 1-47, March 2002.
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 25
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI 10.1093/bioinformatics/btm344
    • Y. Saeys, I. naki Inza, and P. L. naga, A review of feature selection techniques in bioinformatics, Bioinformatics, vol. 23, no. 19, 2507-2517, 2007. (Pubitemid 350048351)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 26
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi and G. H. John, Wrappers for feature subset selection, Artif. Intell., vol. 97, no. 1-2, 273-324, 1997. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 27
    • 0015125457 scopus 로고
    • A direct method of nonparametric measurement selection
    • A. W. Whitney, A direct method of nonparametric measurement selection, IEEE Trans. Comput., vol. 20, no. 9, 1100-1103, 1971.
    • (1971) IEEE Trans. Comput. , vol.20 , Issue.9 , pp. 1100-1103
    • Whitney, A.W.1
  • 28
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • P. Pudil, J. Novovǐcov́a, and J. Kittler, Floating search methods in feature selection, Pattern Recogn. Lett., vol. 15, no. 11, 1119-1125, 1994.
    • (1994) Pattern Recogn. Lett. , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovǐcov́a, J.2    Kittler, J.3
  • 29
    • 0033220764 scopus 로고    scopus 로고
    • Adaptive floating search methods in feature selection
    • DOI 10.1016/S0167-8655(99)00083-5
    • P. Somol, P. Pudil, J. Novovǐcov́a, and P. Pacĺik, Adaptive floating search methods in feature selection, Pattern Recogn. Lett., vol. 20, no. 11-13, 1157-1163, 1999. (Pubitemid 32261893)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1157-1163
    • Somol, P.1    Pudil, P.2    Novovicova, J.3    Paclik, P.4
  • 30
    • 67349133167 scopus 로고    scopus 로고
    • An improvement on floating search algorithms for feature subset selection
    • S. Nakariyakul and D. P. Casasent, An improvement on floating search algorithms for feature subset selection, Pattern Recognition, vol. 42, no. 9, 1932-1940, 2009.
    • (2009) Pattern Recognition , vol.42 , Issue.9 , pp. 1932-1940
    • Nakariyakul, S.1    Casasent, D.P.2
  • 31
    • 34147149841 scopus 로고    scopus 로고
    • Oscillating search algorithms for feature selection
    • Los Alamitos, CA, USA: IEEE Computer Society
    • P. Somol and P. Pudil, Oscillating search algorithms for feature selection, in ICPR 2000, vol. 02. Los Alamitos, CA, USA: IEEE Computer Society, 2000, 406-409.
    • (2000) ICPR 2000 , vol.2 , pp. 406-409
    • Somol, P.1    Pudil, P.2
  • 34
    • 33749612557 scopus 로고    scopus 로고
    • Feature over-selection
    • vol. LNCS 4109. Berlin/Heidelberg, Germany: Springer-Verlag
    • Š. J. Raudys, Feature over-selection, in Structural, Syntactic, and Statistical Pattern Recognition, vol. LNCS 4109. Berlin/Heidelberg, Germany: Springer-Verlag, 2006, 622-631.
    • (2006) Structural, Syntactic, and Statistical Pattern Recognition , pp. 622-631
    • Raudys, Š.J.1
  • 35
    • 77957957188 scopus 로고    scopus 로고
    • Dynamic oscillating search algorithms for feature selection
    • Los Alamitos, CA, USA: IEEE Computer Society
    • P. Somol, J. Novovǐcov́a, J. Grim, and P. Pudil, Dynamic oscillating search algorithms for feature selection, in ICPR 2008. Los Alamitos, CA, USA: IEEE Computer Society, 2008.
    • (2008) ICPR 2008
    • Somol, P.1    Novovǐcov́a, J.2    Grim, J.3    Pudil, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.