메뉴 건너뛰기




Volumn , Issue , 2010, Pages 4396-4399

The problem of fragile feature subset preference in feature selection methods and a proposal of algorithmic workaround

Author keywords

Classification; Feature acquisition cost; Feature selection; Feature weights; Machine learning; Over fitting; Weighted features

Indexed keywords

CLASSIFICATION; FEATURE ACQUISITION; FEATURE SELECTION; FEATURE WEIGHT; MACHINE-LEARNING; OVERFITTING; WEIGHTED FEATURES;

EID: 78149482663     PISSN: 10514651     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICPR.2010.1068     Document Type: Conference Paper
Times cited : (3)

References (15)
  • 5
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feat. sel
    • I. Guyon and A. Elisseeff. An introduction to variable and feat. sel. J. Mach. Learn. Res., 3:1157-1182, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 6
    • 84951828553 scopus 로고    scopus 로고
    • Genetic algorithms for feature selection and weighting, a review and study
    • 00
    • F. Hussein, R. Ward, and N. Kharma. Genetic algorithms for feature selection and weighting, a review and study. icdar, 00:1240, 2001.
    • (2001) icdar , pp. 1240
    • Hussein, F.1    Ward, R.2    Kharma, N.3
  • 8
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi and G. H. John. Wrappers for feature subset selection. Artif. Intell., 97(1-2):273-324, 1997. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 10
    • 33749612557 scopus 로고    scopus 로고
    • Feature over-selection
    • Proc. S+SSPR, Springer-Verlag
    • Š. J. Raudys. Feature over-selection. In Proc. S+SSPR, LNCS 4109, pages 622-631. Springer-Verlag, 2006.
    • (2006) LNCS , vol.4109 , pp. 622-631
    • Raudys, Š.J.1
  • 11
    • 33745808338 scopus 로고    scopus 로고
    • A pitfall in determining the optimal feature subset size
    • Porto, Portugal
    • J. Reunanen. A pitfall in determining the optimal feature subset size. In Proc. 4th Int. Workshop PRIS, pages 176-185, Porto, Portugal, 2004.
    • (2004) Proc. 4th Int. Workshop PRIS , pp. 176-185
    • Reunanen, J.1
  • 12
    • 33745816725 scopus 로고    scopus 로고
    • Less biased measurement of feature selection benefits
    • SLSFS 2005, Revised Selected Papers, Springer
    • J. Reunanen. Less biased measurement of feature selection benefits. In SLSFS 2005, Revised Selected Papers, volume LNCS 3940, pages 198-208. Springer, 2006.
    • (2006) LNCS , vol.3940 , pp. 198-208
    • Reunanen, J.1
  • 13
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • March
    • F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1-47, March 2002.
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 14
    • 77957957188 scopus 로고    scopus 로고
    • Dynamic oscillating search algorithms for feature selection
    • IEEE Computer Society
    • P. Somol, J. Novovičová, J. Grim, and P. Pudil. Dynamic oscillating search algorithms for feature selection. In Proc. ICPR. IEEE Computer Society, 2008.
    • (2008) Proc. ICPR
    • Somol, P.1    Novovičová, J.2    Grim, J.3    Pudil, P.4
  • 15
    • 33845497491 scopus 로고    scopus 로고
    • Simultaneous FS and feature weighting using hybrid tabu search/k-nearest neighbor classifier
    • M. A. Tahir, A. Bouridane and F. Kurugollu. Simultaneous FS and feature weighting using hybrid tabu search/k-nearest neighbor classifier. Patt. Rec. Lett., 28(4):438-446, 2007.
    • (2007) Patt. Rec. Lett. , vol.28 , Issue.4 , pp. 438-446
    • Tahir, M.A.1    Bouridane, A.2    Kurugollu, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.