메뉴 건너뛰기




Volumn 22, Issue 1, 2007, Pages 199-212

Feature selection algorithms in classification problems: An experimental evaluation

Author keywords

Feature selection; Knowledge discovery; Machine learning; Pattern recognition

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); FEATURE EXTRACTION; MATHEMATICAL MODELS;

EID: 33845300232     PISSN: 10556788     EISSN: 10294937     Source Type: Journal    
DOI: 10.1080/10556780600881910     Document Type: Conference Paper
Times cited : (28)

References (31)
  • 1
    • 0003075638 scopus 로고
    • The feature selection problem: Traditional methods and a new algorithm
    • Reston: AAAI Press
    • Kira, K. and Rendell, L., 1992, The feature selection problem: traditional methods and a new algorithm, In: Proceedings of AMI-92 (Reston: AAAI Press).
    • (1992) Proceedings of AMI-92
    • Kira, K.1    Rendell, L.2
  • 2
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum, A.L. and Langley, P., 1997, Selection of relevant features and examples in machine learning, Artificial Intelligence, 97, 245-271.
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 6
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • Narendra, P. and Fukunaga, K., 1977, A branch and bound algorithm for feature subset selection. IEEE Transactions on Computers, 26, 917-922.
    • (1977) IEEE Transactions on Computers , vol.26 , pp. 917-922
    • Narendra, P.1    Fukunaga, K.2
  • 8
    • 70350346892 scopus 로고
    • Use of distance measures, information measures and error bounds in feature evaluation
    • P. R. Krishnaiah and L. N. Kanal (Eds), (North Holland)
    • Ben-Bassat, M., 1982, Use of distance measures, information measures and error bounds in feature evaluation, In: P. R. Krishnaiah and L. N. Kanal (Eds), Handbook of Statistics (North Holland).
    • (1982) Handbook of Statistics
    • Ben-Bassat, M.1
  • 9
    • 0028496468 scopus 로고
    • Learning Boolean concepts in the presence of many irrelevant features
    • Almuallim, H. and Dietterich, T.G., 1994, Learning Boolean concepts in the presence of many irrelevant features, Artificial Intelligence, 69, 279-305.
    • (1994) Artificial Intelligence , vol.69 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 13
    • 0002715112 scopus 로고    scopus 로고
    • A probabilistic approach to feature selection: A filter solution
    • L. Saitta (Ed.), (San Francisco: Morgan Kaufmann)
    • Liu, H. and Setiono, R., 1996, A probabilistic approach to feature selection: a filter solution, In: L. Saitta (Ed.), Proceedings of the 13th International Conference on Machine Learning (San Francisco: Morgan Kaufmann).
    • (1996) Proceedings of the 13th International Conference on Machine Learning
    • Liu, H.1    Setiono, R.2
  • 18
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R. and John, G.H., 1997, Wrappers for feature subset selection. Artificial Intelligence, 97, 273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 19
    • 0000629975 scopus 로고
    • Cross-validation choice and assessment of statistical predictions
    • Stone, M., 1974, Cross-validation choice and assessment of statistical predictions. Journal of the Royal Statistical Society B, 36, 111-147.
    • (1974) Journal of the Royal Statistical Society B , vol.36 , pp. 111-147
    • Stone, M.1
  • 20
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement of cross-validation
    • Efron, B., 1983, Estimating the error rate of a prediction rule: improvement of cross-validation. Journal of the American Statistical Association, 78, 316-330.
    • (1983) Journal of the American Statistical Association , vol.78 , pp. 316-330
    • Efron, B.1
  • 23
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J.R., 1986, Induction of decision trees. Machine Learning, 1, 81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 24
    • 0000902690 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
    • J. Moody, S. Hanson and R. Lippmann (Eds) (San Francisco: Morgan Kaufmann)
    • Moody, J., 1992, The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems, In: J. Moody, S. Hanson and R. Lippmann (Eds) Advances in Neural Information Processing Systems (San Francisco: Morgan Kaufmann).
    • (1992) Advances in Neural Information Processing Systems
    • Moody, J.1
  • 30
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht, D.F., 1990, Probabilistic neural networks. Neural Networks, 3, 109-118.
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.