메뉴 건너뛰기




Volumn 31, Issue 23, 2011, Pages 4706-4719

Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin

Author keywords

[No Author keywords available]

Indexed keywords

BETA CATENIN; COLONY STIMULATING FACTOR 1; OSTEOCLAST DIFFERENTIATION FACTOR; PROTEIN C JUN; TRANSCRIPTION FACTOR GATA 2; WNT PROTEIN;

EID: 83255192191     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.05980-11     Document Type: Article
Times cited : (163)

References (55)
  • 1
    • 0018848939 scopus 로고
    • Osteoclasts derived from haematopoietic stem cells
    • Ash, P., J. F. Loutit, and K. M. Townsend. 1980. Osteoclasts derived from haematopoietic stem cells. Nature 283:669-670.
    • (1980) Nature , vol.283 , pp. 669-670
    • Ash, P.1    Loutit, J.F.2    Townsend, K.M.3
  • 2
    • 42749095897 scopus 로고    scopus 로고
    • NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells
    • Bai, S., et al. 2008. NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J. Biol. Chem. 283:6509-6518.
    • (2008) J. Biol. Chem. , vol.283 , pp. 6509-6518
    • Bai, S.1
  • 3
    • 14744275847 scopus 로고    scopus 로고
    • Regulation of osteoblastogenesis and bone mass by Wnt10b
    • Bennett, C. N., et al. 2005. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc. Natl. Acad. Sci. U. S. A. 102:3324-3329.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 3324-3329
    • Bennett, C.N.1
  • 4
    • 0024444829 scopus 로고
    • Biochemical analysis of transcriptional activation by Jun: differential activity of c- and v-Jun
    • Bohmann, D., and R. Tjian. 1989. Biochemical analysis of transcriptional activation by Jun: differential activity of c- and v-Jun. Cell 59:709-717.
    • (1989) Cell , vol.59 , pp. 709-717
    • Bohmann, D.1    Tjian, R.2
  • 5
    • 0035034603 scopus 로고    scopus 로고
    • Inactivation of the beta-catenin gene by Wnt1-Cremediated deletion results in dramatic brain malformation and failure of craniofacial development
    • Brault, V., et al. 2001. Inactivation of the beta-catenin gene by Wnt1-Cremediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128:1253-1264.
    • (2001) Development , vol.128 , pp. 1253-1264
    • Brault, V.1
  • 6
    • 58249122326 scopus 로고    scopus 로고
    • Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer
    • Chen, B., et al. 2009. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5:100-107.
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 100-107
    • Chen, B.1
  • 7
    • 0033177995 scopus 로고    scopus 로고
    • Conditional gene targeting in macrophages and granulocytes using LysMcre mice
    • Clausen, B. E., C. Burkhardt, W. Reith, R. Renkawitz, and I. Forster. 1999. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8:265-277.
    • (1999) Transgenic Res. , vol.8 , pp. 265-277
    • Clausen, B.E.1    Burkhardt, C.2    Reith, W.3    Renkawitz, R.4    Forster, I.5
  • 8
    • 0035015769 scopus 로고    scopus 로고
    • Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line
    • Constien, R., et al. 2001. Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line. Genesis 30:36-44.
    • (2001) Genesis , vol.30 , pp. 36-44
    • Constien, R.1
  • 9
    • 17844372752 scopus 로고    scopus 로고
    • Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis
    • Day, T. F., X. Guo, L. Garrett-Beal, and Y. Yang. 2005. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8:739-750.
    • (2005) Dev. Cell , vol.8 , pp. 739-750
    • Day, T.F.1    Guo, X.2    Garrett-Beal, L.3    Yang, Y.4
  • 10
    • 33846949349 scopus 로고    scopus 로고
    • Dickkopf-1 is a master regulator of joint remodeling
    • Diarra, D., et al. 2007. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13:156-163.
    • (2007) Nat. Med. , vol.13 , pp. 156-163
    • Diarra, D.1
  • 11
    • 67650431302 scopus 로고    scopus 로고
    • Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma
    • Fulciniti, M., et al. 2009. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 114:371-379.
    • (2009) Blood , vol.114 , pp. 371-379
    • Fulciniti, M.1
  • 12
    • 20244373613 scopus 로고    scopus 로고
    • Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation
    • Glass, D. A., II, et al. 2005. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8:751-764.
    • (2005) Dev. Cell , vol.8 , pp. 751-764
    • Glass II, D.A.1
  • 13
    • 0033230616 scopus 로고    scopus 로고
    • Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene
    • Harada, N., et al. 1999. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 18:5931-5942.
    • (1999) EMBO J. , vol.18 , pp. 5931-5942
    • Harada, N.1
  • 14
    • 0034930640 scopus 로고    scopus 로고
    • Osteoprotegerin and receptor activator of nuclear factor kappaB ligand (RANKL) regulate osteoclast formation by cells in the human rheumatoid arthritic joint
    • Haynes, D. R., et al. 2001. Osteoprotegerin and receptor activator of nuclear factor kappaB ligand (RANKL) regulate osteoclast formation by cells in the human rheumatoid arthritic joint. Rheumatology (Oxford) 40:623-630.
    • (2001) Rheumatology (Oxford) , vol.40 , pp. 623-630
    • Haynes, D.R.1
  • 15
    • 17844363974 scopus 로고    scopus 로고
    • Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes
    • Hill, T. P., D. Spater, M. M. Taketo, W. Birchmeier, and C. Hartmann. 2005. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell. 8:727-738.
    • (2005) Dev. Cell. , vol.8 , pp. 727-738
    • Hill, T.P.1    Spater, D.2    Taketo, M.M.3    Birchmeier, W.4    Hartmann, C.5
  • 16
    • 20444376156 scopus 로고    scopus 로고
    • Essential role of beta-catenin in postnatal bone acquisition
    • Holmen, S. L., et al. 2005. Essential role of beta-catenin in postnatal bone acquisition. J. Biol. Chem. 280:21162-21168.
    • (2005) J. Biol. Chem. , vol.280 , pp. 21162-21168
    • Holmen, S.L.1
  • 17
    • 0029798819 scopus 로고    scopus 로고
    • Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta
    • Hughes, D. E., et al. 1996. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat. Med. 2:1132-1136.
    • (1996) Nat. Med. , vol.2 , pp. 1132-1136
    • Hughes, D.E.1
  • 18
    • 0030750208 scopus 로고    scopus 로고
    • Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts
    • Kameda, T., et al. 1997. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J Exp Med 186:489-495.
    • (1997) J Exp Med , vol.186 , pp. 489-495
    • Kameda, T.1
  • 19
    • 0032568321 scopus 로고    scopus 로고
    • Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells
    • Kanda, T., K. F. Sullivan, and G. M. Wahl. 1998. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8:377-385.
    • (1998) Curr. Biol. , vol.8 , pp. 377-385
    • Kanda, T.1    Sullivan, K.F.2    Wahl, G.M.3
  • 20
    • 34347235843 scopus 로고    scopus 로고
    • Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma
    • Kang, S., et al. 2007. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 282:14515-14524.
    • (2007) J. Biol. Chem. , vol.282 , pp. 14515-14524
    • Kang, S.1
  • 21
    • 0041923632 scopus 로고    scopus 로고
    • Suppressive function of androgen receptor in bone resorption
    • Kawano, H., et al. 2003. Suppressive function of androgen receptor in bone resorption. Proc. Natl. Acad. Sci. U. S. A. 100:9416-9421.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 9416-9421
    • Kawano, H.1
  • 22
    • 0035865048 scopus 로고    scopus 로고
    • Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo
    • Kisanuki, Y. Y., et al. 2001. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev. Biol. 230:230-242.
    • (2001) Dev. Biol. , vol.230 , pp. 230-242
    • Kisanuki, Y.Y.1
  • 23
    • 0033581952 scopus 로고    scopus 로고
    • Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand
    • Kong, Y. Y., et al. 1999. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402:304-309.
    • (1999) Nature , vol.402 , pp. 304-309
    • Kong, Y.Y.1
  • 24
    • 0037174675 scopus 로고    scopus 로고
    • Reversal of bone loss in mice by nongenotropic signaling of sex steroids
    • Kousteni, S., et al. 2002. Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298:843-846.
    • (2002) Science , vol.298 , pp. 843-846
    • Kousteni, S.1
  • 25
    • 0032540319 scopus 로고    scopus 로고
    • Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation
    • Lacey, D. L., et al. 1998. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165-176.
    • (1998) Cell , vol.93 , pp. 165-176
    • Lacey, D.L.1
  • 26
    • 34250847265 scopus 로고    scopus 로고
    • Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone
    • Lazarenko, O. P., et al. 2007. Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148:2669-2680.
    • (2007) Endocrinology , vol.148 , pp. 2669-2680
    • Lazarenko, O.P.1
  • 27
    • 65549152230 scopus 로고    scopus 로고
    • Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis
    • Li, X., et al. 2009. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J. Bone Miner. Res. 24:578-588.
    • (2009) J. Bone Miner. Res. , vol.24 , pp. 578-588
    • Li, X.1
  • 28
    • 8444251784 scopus 로고    scopus 로고
    • The Wnt signaling pathway in development and disease
    • Logan, C. Y., and R. Nusse. 2004. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20:781-810.
    • (2004) Annu. Rev. Cell Dev. Biol. , vol.20 , pp. 781-810
    • Logan, C.Y.1    Nusse, R.2
  • 29
    • 0036675220 scopus 로고    scopus 로고
    • Metastasis to bone: causes, consequences and therapeutic opportunities
    • Mundy, G. R. 2002. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2:584-593.
    • (2002) Nat. Rev. Cancer , vol.2 , pp. 584-593
    • Mundy, G.R.1
  • 30
    • 34548274444 scopus 로고    scopus 로고
    • Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts
    • Nakamura, T., et al. 2007. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130:811-823.
    • (2007) Cell , vol.130 , pp. 811-823
    • Nakamura, T.1
  • 32
    • 77953481395 scopus 로고    scopus 로고
    • Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength
    • Ominsky, M. S., et al. 2010. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J. Bone Miner. Res. 25:948-959.
    • (2010) J. Bone Miner. Res. , vol.25 , pp. 948-959
    • Ominsky, M.S.1
  • 33
    • 78650958526 scopus 로고    scopus 로고
    • Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody
    • Padhi, D., G. Jang, B. Stouch, L. Fang, and E. Posvar. 2011. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J. Bone Miner. Res. 26:19-26.
    • (2011) J. Bone Miner. Res. , vol.26 , pp. 19-26
    • Padhi, D.1    Jang, G.2    Stouch, B.3    Fang, L.4    Posvar, E.5
  • 34
    • 0029006550 scopus 로고
    • Intramolecular signal transduction in c-Jun
    • Papavassiliou, A. G., M. Treier, and D. Bohmann. 1995. Intramolecular signal transduction in c-Jun. EMBO J. 14:2014-2019.
    • (1995) EMBO J. , vol.14 , pp. 2014-2019
    • Papavassiliou, A.G.1    Treier, M.2    Bohmann, D.3
  • 35
    • 0033515827 scopus 로고    scopus 로고
    • Multilineage potential of adult human mesenchymal stem cells
    • Pittenger, M. F., et al. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284:143-147.
    • (1999) Science , vol.284 , pp. 143-147
    • Pittenger, M.F.1
  • 36
    • 27744461726 scopus 로고    scopus 로고
    • Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation
    • Poole, K. E., et al. 2005. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 19:1842-1844.
    • (2005) FASEB J. , vol.19 , pp. 1842-1844
    • Poole, K.E.1
  • 37
    • 0031886864 scopus 로고    scopus 로고
    • The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation
    • Ricote, M., A. C. Li, T. M. Willson, C. J. Kelly, and C. K. Glass. 1998. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79-82.
    • (1998) Nature , vol.391 , pp. 79-82
    • Ricote, M.1    Li, A.C.2    Willson, T.M.3    Kelly, C.J.4    Glass, C.K.5
  • 38
    • 4644261592 scopus 로고    scopus 로고
    • Mechanisms of bone metastasis
    • Roodman, G. D. 2004. Mechanisms of bone metastasis. N. Engl. J. Med. 350:1655-1664.
    • (2004) N. Engl. J. Med. , vol.350 , pp. 1655-1664
    • Roodman, G.D.1
  • 39
    • 1242267927 scopus 로고    scopus 로고
    • Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor
    • Sato, N., L. Meijer, L. Skaltsounis, P. Greengard, and A. H. Brivanlou. 2004. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10:55-63.
    • (2004) Nat. Med. , vol.10 , pp. 55-63
    • Sato, N.1    Meijer, L.2    Skaltsounis, L.3    Greengard, P.4    Brivanlou, A.H.5
  • 40
    • 73349110430 scopus 로고    scopus 로고
    • Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis
    • Takada, I., A. P. Kouzmenko, and S. Kato. 2009. Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat. Rev. Rheumatol. 5:442-447.
    • (2009) Nat. Rev. Rheumatol. , vol.5 , pp. 442-447
    • Takada, I.1    Kouzmenko, A.P.2    Kato, S.3
  • 41
    • 53549130485 scopus 로고    scopus 로고
    • White fat progenitor cells reside in the adipose vasculature
    • Tang, W., et al. 2008. White fat progenitor cells reside in the adipose vasculature. Science 322:583-586.
    • (2008) Science , vol.322 , pp. 583-586
    • Tang, W.1
  • 42
    • 0033119801 scopus 로고    scopus 로고
    • Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells
    • Tetsu, O., and F. McCormick. 1999. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422-426.
    • (1999) Nature , vol.398 , pp. 422-426
    • Tetsu, O.1    McCormick, F.2
  • 43
    • 0346363760 scopus 로고    scopus 로고
    • The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma
    • Tian, E., et al. 2003. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med. 349:2483-2494.
    • (2003) N. Engl. J. Med. , vol.349 , pp. 2483-2494
    • Tian, E.1
  • 45
    • 0032540012 scopus 로고    scopus 로고
    • PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL
    • Tontonoz, P., L. Nagy, J. G. Alvarez, V. A. Thomazy, and R. M. Evans. 1998. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93:241-252.
    • (1998) Cell , vol.93 , pp. 241-252
    • Tontonoz, P.1    Nagy, L.2    Alvarez, J.G.3    Thomazy, V.A.4    Evans, R.M.5
  • 46
    • 0028022916 scopus 로고
    • An early haematopoietic defect in mice lacking the transcription factor GATA-2
    • Tsai, F. Y., et al. 1994. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371:221-226.
    • (1994) Nature , vol.371 , pp. 221-226
    • Tsai, F.Y.1
  • 47
    • 0347634454 scopus 로고    scopus 로고
    • Defining the epithelial stem cell niche in skin
    • Tumbar, T., et al. 2004. Defining the epithelial stem cell niche in skin. Science 303:359-363.
    • (2004) Science , vol.303 , pp. 359-363
    • Tumbar, T.1
  • 48
    • 36849034568 scopus 로고    scopus 로고
    • PPAR-gamma regulates osteoclastogenesis in mice
    • Wan, Y., L. W. Chong, and R. M. Evans. 2007. PPAR-gamma regulates osteoclastogenesis in mice. Nat. Med. 13:1496-1503.
    • (2007) Nat. Med. , vol.13 , pp. 1496-1503
    • Wan, Y.1    Chong, L.W.2    Evans, R.M.3
  • 49
    • 77956408841 scopus 로고    scopus 로고
    • PGC1beta mediates PPARgamma activation of osteoclastogenesis and rosiglitazone-induced bone loss
    • Wei, W., et al. 2010. PGC1beta mediates PPARgamma activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab. 11:503-516.
    • (2010) Cell Metab. , vol.11 , pp. 503-516
    • Wei, W.1
  • 50
    • 83255186737 scopus 로고    scopus 로고
    • Osteoclast progenitors reside in the peroxisome proliferator- activated receptor γ-expressing bone marrow cell population
    • Wei, W., et al. 2011. Osteoclast progenitors reside in the peroxisome proliferator-activated receptor γ-expressing bone marrow cell population. Mol. Cell. Biol. 31:4692-4705.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 4692-4705
    • Wei, W.1
  • 51
    • 0034126954 scopus 로고    scopus 로고
    • Sequential requirements for SCL/tal-1, GATA-2, macrophage colony-stimulating factor, and osteoclast differentiation factor/osteoprotegerin ligand in osteoclast development
    • Yamane, T., et al. 2000. Sequential requirements for SCL/tal-1, GATA-2, macrophage colony-stimulating factor, and osteoclast differentiation factor/osteoprotegerin ligand in osteoclast development. Exp. Hematol. 28:833-840.
    • (2000) Exp. Hematol. , vol.28 , pp. 833-840
    • Yamane, T.1
  • 52
    • 0032584208 scopus 로고    scopus 로고
    • Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL
    • Yasuda, H., et al. 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. U. S. A. 95:3597-3602.
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , pp. 3597-3602
    • Yasuda, H.1
  • 53
    • 21244439944 scopus 로고    scopus 로고
    • Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression
    • Yuasa, H., et al. 2005. Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J. 24:1976-1987.
    • (2005) EMBO J. , vol.24 , pp. 1976-1987
    • Yuasa, H.1
  • 54
    • 44349125905 scopus 로고    scopus 로고
    • Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix
    • Zhang, C., et al. 2008. Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix. Proc. Natl. Acad. Sci. U. S. A. 105:6936-6941.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 6936-6941
    • Zhang, C.1
  • 55
    • 75149119236 scopus 로고    scopus 로고
    • Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes
    • Zinman, B., et al. 2010. Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 95:134-142.
    • (2010) J. Clin. Endocrinol. Metab. , vol.95 , pp. 134-142
    • Zinman, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.