메뉴 건너뛰기




Volumn 6, Issue 4, 2011, Pages 427-443

Fuzzy clustering for microarray data analysis: A review

Author keywords

Fuzzy c means; Fuzzy clustering; Fuzzy hyper prototype clustering; Microarray data analysis

Indexed keywords

ARTICLE; CLUSTER ANALYSIS; DATA ANALYSIS; FUNGAL GENE; FUZZY SYSTEM; GENE EXPRESSION; GENE REGULATORY NETWORK; GENOMICS; MICROARRAY ANALYSIS; NONHUMAN; PRIORITY JOURNAL; SACCHAROMYCES CEREVISIAE;

EID: 81155126447     PISSN: 15748936     EISSN: None     Source Type: Journal    
DOI: 10.2174/157489311798072963     Document Type: Article
Times cited : (7)

References (110)
  • 1
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286(5439): 531-537.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 2
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • Nguyen DV, Rocke DM. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 2002; 18(1): 39-50.
    • (2002) Bioinformatics , vol.18 , Issue.1 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 3
  • 5
    • 36248940832 scopus 로고    scopus 로고
    • Machine learning-based receiver operating characteristic (ROC) curves for crisp and fuzzy classification of DNA microarrays in cancer research
    • Peterson LE, Coleman MA. Machine learning-based receiver operating characteristic (ROC) curves for crisp and fuzzy classification of DNA microarrays in cancer research. Intl J Approx Reason 2008; 47(1): 17-36.
    • (2008) Intl J Approx Reason , vol.47 , Issue.1 , pp. 17-36
    • Peterson, L.E.1    Coleman, M.A.2
  • 6
    • 33845413755 scopus 로고    scopus 로고
    • Regularized linear discriminant analysis and its application in microarrays
    • Guo Y, Hastie T, Tibshirani R. Regularized linear discriminant analysis and its application in microarrays. Biostatistics 2007; 8(1): 86-100.
    • (2007) Biostatistics , vol.8 , Issue.1 , pp. 86-100
    • Guo, Y.1    Hastie, T.2    Tibshirani, R.3
  • 7
    • 40649122543 scopus 로고    scopus 로고
    • On classification models of gene expression microarrays: The simpler the better
    • IJCNN '06. Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
    • Pranckeviciene E, Somorjai R. On classification models of gene expression microarrays: the simpler the better. In: International Joint Conference on Neural Networks. IJCNN '06. Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada; 2006. p. 3572-3579.
    • (2006) International Joint Conference On Neural Networks , pp. 3572-3579
    • Pranckeviciene, E.1    Somorjai, R.2
  • 8
    • 0036208346 scopus 로고    scopus 로고
    • Improved background correction for spotted DNA microarrays
    • Kooperberg C, Fazzio TG, Delrow JJ, et al. Improved background correction for spotted DNA microarrays. J Comput Biol 2002; 9(1): 55-66.
    • (2002) J Comput Biol , vol.9 , Issue.1 , pp. 55-66
    • Kooperberg, C.1    Fazzio, T.G.2    Delrow, J.J.3
  • 9
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403(6769): 503-511.
    • (2000) Nature , vol.403 , Issue.6769 , pp. 503-511
    • Alizadeh, A.A.1    Eisen, M.B.2    Davis, R.E.3
  • 10
    • 0034960264 scopus 로고    scopus 로고
    • Missing value estimation methods for DNA microarrays
    • Troyanskaya O, Cantor M, Sherlock G, et al. Missing value estimation methods for DNA microarrays. Bioinformatics 2001; 17(6): 520-525.
    • (2001) Bioinformatics , vol.17 , Issue.6 , pp. 520-525
    • Troyanskaya, O.1    Cantor, M.2    Sherlock, G.3
  • 11
    • 2342646842 scopus 로고    scopus 로고
    • LSimpute: Accurate estimation of missing values in microarray data with least squares methods
    • Bo TH, Dysvik B, Jonassen I. LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucl Acids Res 2004; 32(3): e34.
    • (2004) Nucl Acids Res , vol.32 , Issue.3
    • Bo, T.H.1    Dysvik, B.2    Jonassen, I.3
  • 12
    • 19344371607 scopus 로고    scopus 로고
    • Evaluation of missing value estimation for microarray data
    • Nguyen DV, Wang N, Carroll RJ. Evaluation of missing value estimation for microarray data. J Data Sci 2004; 2(4): 347-370.
    • (2004) J Data Sci , vol.2 , Issue.4 , pp. 347-370
    • Nguyen, D.V.1    Wang, N.2    Carroll, R.J.3
  • 13
    • 13444304426 scopus 로고    scopus 로고
    • Missing value estimation for DNA microarray gene expression data: Local least squares imputation
    • Kim H, Golub GH, Park H. Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 2005; 21(2): 187-198.
    • (2005) Bioinformatics , vol.21 , Issue.2 , pp. 187-198
    • Kim, H.1    Golub, G.H.2    Park, H.3
  • 14
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • Kriegel HP, Kroger P, Zimek A. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data 2009; 3(1): 1-58.
    • (2009) ACM Trans Knowl Discov Data , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.P.1    Kroger, P.2    Zimek, A.3
  • 15
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007; 23(19): 2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 16
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 2002; 97(457): 77-87.
    • (2002) J Am Stat Assoc , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 17
    • 10444280144 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • Lee JW, Lee JB, Park M, et al. An extensive comparison of recent classification tools applied to microarray data. Comput Stat & Data Anal 2005; 48(4): 869-885.
    • (2005) Comput Stat & Data Anal , vol.48 , Issue.4 , pp. 869-885
    • Lee, J.W.1    Lee, J.B.2    Park, M.3
  • 18
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • Li T, Zhang CL, Ogihara M. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 2004; 20(15): 2429-2437.
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2429-2437
    • Li, T.1    Zhang, C.L.2    Ogihara, M.3
  • 19
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Statnikov A, Aliferis CF, Tsamardinos I, et al. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 2005; 21(5): 631-643.
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3
  • 20
    • 33746489367 scopus 로고    scopus 로고
    • An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors
    • Jafari P, Azuaje F. An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors. BMC Med Inform Decision Making 2006; 6(1): 27.
    • (2006) BMC Med Inform Decision Making , vol.6 , Issue.1 , pp. 27
    • Jafari, P.1    Azuaje, F.2
  • 21
    • 0034911875 scopus 로고    scopus 로고
    • An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
    • Thomas JG, Olson JM, Tapscott SJ, et al. An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res 2001; 11(7): 1227-1236.
    • (2001) Genome Res , vol.11 , Issue.7 , pp. 1227-1236
    • Thomas, J.G.1    Olson, J.M.2    Tapscott, S.J.3
  • 22
    • 0034923013 scopus 로고    scopus 로고
    • On differential variability of expression tatios: Improving statistical inference about gene expression changes from microarray data
    • Newton MA, Kendziorski CM, Richmond CS, et al. On differential variability of expression tatios: improving statistical inference about gene expression changes from microarray data. J Comput Biol 2001; 8(1): 37-52.
    • (2001) J Comput Biol , vol.8 , Issue.1 , pp. 37-52
    • Newton, M.A.1    Kendziorski, C.M.2    Richmond, C.S.3
  • 23
    • 4344571581 scopus 로고    scopus 로고
    • Rank products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments
    • Breitling R, Armengaud P, Amtmann A, et al. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 2004; 573(1-3): 83-92.
    • (2004) FEBS Lett , vol.573 , Issue.1-3 , pp. 83-92
    • Breitling, R.1    Armengaud, P.2    Amtmann, A.3
  • 24
    • 0000959484 scopus 로고    scopus 로고
    • CLIFF: Clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts
    • Xing EP, Karp RM. CLIFF: clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics 2001; 17(Suppl 1): S306-S315.
    • (2001) Bioinformatics , vol.17 , Issue.SUPPL. 1
    • Xing, E.P.1    Karp, R.M.2
  • 25
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003; 3: 1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 26
    • 33846606051 scopus 로고    scopus 로고
    • Clustering methods for microarray gene expression data
    • Belacel N, Wang QC, Cuperlovic-Culf M. Clustering methods for microarray gene expression data. OMICS 2006; 10(4): 507-531.
    • (2006) OMICS , vol.10 , Issue.4 , pp. 507-531
    • Belacel, N.1    Wang, Q.C.2    Cuperlovic-Culf, M.3
  • 27
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen MB, Spellman PT, Brown PO, et al. Cluster analysis and display of genome-wide expression patterns. Proc of the Nat Acad Sci USA 1998; 95(25): 14863-14868.
    • (1998) Proc of the Nat Acad Sci USA , vol.95 , Issue.25 , pp. 14863-14868
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3
  • 28
    • 13844276694 scopus 로고    scopus 로고
    • Cluster analysis for gene expression data: A survey
    • Jiang D, Tang C, Zhang A. Cluster analysis for gene expression data: a survey. IEEE Trans Knowl Data Eng 2004; 16(11): 1370-1386.
    • (2004) IEEE Trans Knowl Data Eng , vol.16 , Issue.11 , pp. 1370-1386
    • Jiang, D.1    Tang, C.2    Zhang, A.3
  • 29
    • 33745967088 scopus 로고    scopus 로고
    • Mining gene expression data by interpreting principal components
    • Roden J, King B, Trout D, et al. Mining gene expression data by interpreting principal components. BMC Bioinformatics 2006; 7(1): 194.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 194
    • Roden, J.1    King, B.2    Trout, D.3
  • 30
    • 78149445070 scopus 로고    scopus 로고
    • A systems biology strategy on differential gene expression data discloses some biological features of Atrial Fibrillation
    • Censi F, Calcagnini G, Bartolini P, et al. A systems biology strategy on differential gene expression data discloses some biological features of Atrial Fibrillation. PLoS ONE 2010; 5(10): e13668.
    • (2010) PLoS ONE , vol.5 , Issue.10
    • Censi, F.1    Calcagnini, G.2    Bartolini, P.3
  • 32
    • 38349055557 scopus 로고    scopus 로고
    • Indeterminacy of reverse engineering of gene regulatory networks: The curse of gene elasticity
    • Krishnan A, Giuliani A, Tomita M. Indeterminacy of reverse engineering of gene regulatory networks: the curse of gene elasticity. PLoS ONE 2007; 2(6): e562.
    • (2007) PLoS ONE , vol.2 , Issue.6
    • Krishnan, A.1    Giuliani, A.2    Tomita, M.3
  • 34
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003; 19(17): 2271-2282.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 35
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou M, Conzen SD. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 2005; 21(1): 71-79.
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2
  • 36
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • Kauffman SA. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 1969; 22(3): 437-467.
    • (1969) J Theor Biol , vol.22 , Issue.3 , pp. 437-467
    • Kauffman, S.A.1
  • 37
    • 34147106039 scopus 로고    scopus 로고
    • SGN Sim, a stochastic genetic networks simulator
    • Ribeiro AS, Lloyd-Price J. SGN Sim, a stochastic genetic networks simulator. Bioinformatics 2007; 23(6): 777-779.
    • (2007) Bioinformatics , vol.23 , Issue.6 , pp. 777-779
    • Ribeiro, A.S.1    Lloyd-Price, J.2
  • 38
    • 33750016109 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from multiple microarray datasets
    • Wang Y, Joshi T, Zhang XS, et al. Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics 2006; 22(19): 2413-2420.
    • (2006) Bioinformatics , vol.22 , Issue.19 , pp. 2413-2420
    • Wang, Y.1    Joshi, T.2    Zhang, X.S.3
  • 39
    • 66449090934 scopus 로고    scopus 로고
    • Reprogramming cell fates: Reconciling rarity with robustness
    • Huang S. Reprogramming cell fates: reconciling rarity with robustness. BioEssays 2009; 31(5): 546-560.
    • (2009) BioEssays , vol.31 , Issue.5 , pp. 546-560
    • Huang, S.1
  • 40
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Xu R, Wunsch D. Survey of clustering algorithms. IEEE Trans on Neural Networks 2005; 16(3): 645-678.
    • (2005) IEEE Trans On Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch, D.2
  • 41
    • 78650121315 scopus 로고    scopus 로고
    • Clustering algorithms in biomedical research: A review
    • Xu R, Wunsch D. Clustering algorithms in biomedical research: a review. IEEE Rev Biomed Eng 2010; 3: 120-154.
    • (2010) IEEE Rev Biomed Eng , vol.3 , pp. 120-154
    • Xu, R.1    Wunsch, D.2
  • 42
    • 0034298140 scopus 로고    scopus 로고
    • Generalized fuzzy c-means clustering strategies using Lp norm distances
    • Hathaway RJ, Bezdek JC, Hu Y. Generalized fuzzy c-means clustering strategies using Lp norm distances. IEEE Trans on Fuzzy Syst 2000; 8(5): 576-582.
    • (2000) IEEE Trans On Fuzzy Syst , vol.8 , Issue.5 , pp. 576-582
    • Hathaway, R.J.1    Bezdek, J.C.2    Hu, Y.3
  • 46
    • 15844371192 scopus 로고    scopus 로고
    • Reliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods
    • Asyali MH, Alci M. Reliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods. Bioinformatics 2005; 21(5): 644-649.
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 644-649
    • Asyali, M.H.1    Alci, M.2
  • 47
    • 17944394324 scopus 로고    scopus 로고
    • Fuzzy C-means method for clustering microarray data
    • Dembélé D, Kastner P. Fuzzy C-means method for clustering microarray data. Bioinformatics 2003; 19(8): 973-980.
    • (2003) Bioinformatics , vol.19 , Issue.8 , pp. 973-980
    • Dembélé, D.1    Kastner, P.2
  • 48
    • 60049085522 scopus 로고    scopus 로고
    • Fuzzy c-means clustering with prior biological knowledge
    • Tari L, Baral C, Kim S. Fuzzy c-means clustering with prior biological knowledge. J Biomed Inform 2009; 42(1): 74-81.
    • (2009) J Biomed Inform , vol.42 , Issue.1 , pp. 74-81
    • Tari, L.1    Baral, C.2    Kim, S.3
  • 49
    • 39449097889 scopus 로고    scopus 로고
    • Techniques for clustering gene expression data
    • Kerr G, Ruskin HJ, Crane M, Doolan P. Techniques for clustering gene expression data. Comput Biol Med 2008; 38(3): 283-293.
    • (2008) Comput Biol Med , vol.38 , Issue.3 , pp. 283-293
    • Kerr, G.1    Ruskin, H.J.2    Crane, M.3    Doolan, P.4
  • 50
    • 36448965202 scopus 로고    scopus 로고
    • An improved algorithm for clustering gene expression data
    • Bandyopadhyay S, Mukhopadhyay A, Maulik U. An improved algorithm for clustering gene expression data. Bioinformatics 2007; 23(21): 2859-2865.
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2859-2865
    • Bandyopadhyay, S.1    Mukhopadhyay, A.2    Maulik, U.3
  • 51
    • 39449096984 scopus 로고    scopus 로고
    • FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data
    • Fu L, Medico E. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics 2007; 8(1): 3.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 3
    • Fu, L.1    Medico, E.2
  • 53
    • 0036207548 scopus 로고    scopus 로고
    • Inference from clustering with application to gene-expression microarrays
    • Dougherty ER, Barrera J, Brun M, et al. Inference from clustering with application to gene-expression microarrays. J Comput Biol 2002; 9(1): 105-126.
    • (2002) J Comput Biol , vol.9 , Issue.1 , pp. 105-126
    • Dougherty, E.R.1    Barrera, J.2    Brun, M.3
  • 54
    • 0036169031 scopus 로고    scopus 로고
    • Genesis: Cluster analysis of microarray data
    • Sturn A, Quackenbush J, Trajanoski Z. Genesis: cluster analysis of microarray data. Bioinformatics 2002; 18(1): 207-208.
    • (2002) Bioinformatics , vol.18 , Issue.1 , pp. 207-208
    • Sturn, A.1    Quackenbush, J.2    Trajanoski, Z.3
  • 55
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • research0036.1-research0036.21
    • Dudoit S, Fridlyand J. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol 2002; 3(7): research0036.1-research0036.21.
    • (2002) Genome Biol , vol.3 , Issue.7
    • Dudoit, S.1    Fridlyand, J.2
  • 56
    • 0035979259 scopus 로고    scopus 로고
    • Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments
    • Kerr MK, Churchill GA. Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments. Proc Nat Acad Sci USA 2001; 98(16): 8961-8965.
    • (2001) Proc Nat Acad Sci USA , vol.98 , Issue.16 , pp. 8961-8965
    • Kerr, M.K.1    Churchill, G.A.2
  • 57
    • 0034307661 scopus 로고    scopus 로고
    • Comprehensive gene expression profile of LPS-stimulated human monocytes by SAGE
    • Suzuki T, Hashimoto S, Toyoda N, et al. Comprehensive gene expression profile of LPS-stimulated human monocytes by SAGE. Blood 2000; 96(7): 2584-2591.
    • (2000) Blood , vol.96 , Issue.7 , pp. 2584-2591
    • Suzuki, T.1    Hashimoto, S.2    Toyoda, N.3
  • 58
    • 72149122625 scopus 로고    scopus 로고
    • Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study
    • Graves D, Pedrycz W. Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study. Fuzzy Sets Syst 2010; 161(1): 522-543.
    • (2010) Fuzzy Sets Syst , vol.161 , Issue.1 , pp. 522-543
    • Graves, D.1    Pedrycz, W.2
  • 59
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Machine Learning 2002; 46(1-3): 389-422.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 60
    • 76749106573 scopus 로고    scopus 로고
    • A multiobjective simultaneous learning framework for clustering and classification
    • Cai W, Chen S, Zhang D. A multiobjective simultaneous learning framework for clustering and classification. IEEE Trans Neural Networks 2010; 21(2): 185-200.
    • (2010) IEEE Trans Neural Networks , vol.21 , Issue.2 , pp. 185-200
    • Cai, W.1    Chen, S.2    Zhang, D.3
  • 61
    • 3342991601 scopus 로고    scopus 로고
    • Gene selection and classification from microarray data using kernel machine
    • Cho JH, Lee D, Park JH, et al. Gene selection and classification from microarray data using kernel machine. FEBS Lett 2004; 571(1-3): 93-98.
    • (2004) FEBS Lett , vol.571 , Issue.1-3 , pp. 93-98
    • Cho, J.H.1    Lee, D.2    Park, J.H.3
  • 62
    • 33746131974 scopus 로고    scopus 로고
    • Kernel-based distance metric learning for microarray data classification
    • Xiong H, Chen X. Kernel-based distance metric learning for microarray data classification. BMC Bioinformatics 2006; 7(1): 299.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 299
    • Xiong, H.1    Chen, X.2
  • 63
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • Statnikov A, Wang L, Aliferis C. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 2008; 9(1): 319.
    • (2008) BMC Bioinformatics , vol.9 , Issue.1 , pp. 319
    • Statnikov, A.1    Wang, L.2    Aliferis, C.3
  • 64
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data by using support vector machines
    • Brown MPS, Grundy WN, Lin D, et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Nat Acad Sci USA 2000; 97(1): 262-267.
    • (2000) Proc Nat Acad Sci USA , vol.97 , Issue.1 , pp. 262-267
    • Brown, M.P.S.1    Grundy, W.N.2    Lin, D.3
  • 65
    • 70349249326 scopus 로고    scopus 로고
    • Classification from microarray data using probabilistic discriminant partial least squares with reject option
    • Botella C, Ferré J, Boqué R. Classification from microarray data using probabilistic discriminant partial least squares with reject option. Talanta 2009; 80(1): 321-328.
    • (2009) Talanta , vol.80 , Issue.1 , pp. 321-328
    • Botella, C.1    Ferré, J.2    Boqué, R.3
  • 66
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey TS, Cristianini N, Duffy N, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000; 16(10): 906-914.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3
  • 67
    • 0242475337 scopus 로고    scopus 로고
    • Kernel hierarchical gene clustering from microarray expression data
    • Qin J, Lewis DP, Noble WS. Kernel hierarchical gene clustering from microarray expression data. Bioinformatics 2003; 19(16): 2097-2104.
    • (2003) Bioinformatics , vol.19 , Issue.16 , pp. 2097-2104
    • Qin, J.1    Lewis, D.P.2    Noble, W.S.3
  • 68
    • 27744594238 scopus 로고    scopus 로고
    • Gene expression data classification with kernel principal component analysis
    • Liu Z, Chen D, Bensmail H. Gene expression data classification with kernel principal component analysis. J Biomed Biotechnol 2005; 2005(2): 155-159.
    • (2005) J Biomed Biotechnol , vol.2005 , Issue.2 , pp. 155-159
    • Liu, Z.1    Chen, D.2    Bensmail, H.3
  • 69
    • 67649403094 scopus 로고    scopus 로고
    • Towards improving fuzzy clustering using support vector machine: Application to gene expression data
    • Mukhopadhyay A, Maulik U. Towards improving fuzzy clustering using support vector machine: Application to gene expression data. Patt Recogn 2009; 42(11): 2744-2763.
    • (2009) Patt Recogn , vol.42 , Issue.11 , pp. 2744-2763
    • Mukhopadhyay, A.1    Maulik, U.2
  • 70
    • 73449097843 scopus 로고    scopus 로고
    • Simulated annealing based automatic fuzzy clustering combined with ANN classification for analyzing microarray data
    • Maulik U, Mukhopadhyay A. Simulated annealing based automatic fuzzy clustering combined with ANN classification for analyzing microarray data. Comput & Operations Res 2010; 37(8): 1369-1380.
    • (2010) Comput & Operations Res , vol.37 , Issue.8 , pp. 1369-1380
    • Maulik, U.1    Mukhopadhyay, A.2
  • 71
    • 62349084208 scopus 로고    scopus 로고
    • A simultaneous learning framework for clustering and classification
    • Cai W, Chen S, Zhang D. A simultaneous learning framework for clustering and classification. Patt Recogn 2009; 42(7): 1248-1259.
    • (2009) Patt Recogn , vol.42 , Issue.7 , pp. 1248-1259
    • Cai, W.1    Chen, S.2    Zhang, D.3
  • 72
  • 74
    • 18744364197 scopus 로고    scopus 로고
    • Detecting clusters of different geometrical shapes in microarray gene expression data
    • Kim DW, Lee KH, Lee D. Detecting clusters of different geometrical shapes in microarray gene expression data. Bioinformatics 2005; 21(9): 1927-1934.
    • (2005) Bioinformatics , vol.21 , Issue.9 , pp. 1927-1934
    • Kim, D.W.1    Lee, K.H.2    Lee, D.3
  • 77
    • 39649088953 scopus 로고    scopus 로고
    • A new geometric biclustering algorithm based on the Hough transform for analysis of large-scale microarray data
    • Zhao H, Liew AWC, Xie X, et al. A new geometric biclustering algorithm based on the Hough transform for analysis of large-scale microarray data. J Theor Biol 2008; 251(2): 264-274.
    • (2008) J Theor Biol , vol.251 , Issue.2 , pp. 264-274
    • Zhao, H.1    Liew, A.W.C.2    Xie, X.3
  • 78
    • 33645794993 scopus 로고    scopus 로고
    • Biclustering of gene expression data by non-smooth non-negative matrix factorization
    • Carmona-Saez P, Pascual-Marqui R, Tirado F, et al. Biclustering of gene expression data by non-smooth non-negative matrix factorization. BMC Bioinformatics 2006; 7(1): 78.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 78
    • Carmona-Saez, P.1    Pascual-Marqui, R.2    Tirado, F.3
  • 79
    • 33646137384 scopus 로고    scopus 로고
    • A systematic comparison and evaluation of biclustering methods for gene expression data
    • Prelic A, Bleuler S, Zimmermann P, et al. A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 2006; 22(9): 1122-1129.
    • (2006) Bioinformatics , vol.22 , Issue.9 , pp. 1122-1129
    • Prelic, A.1    Bleuler, S.2    Zimmermann, P.3
  • 80
    • 70449627591 scopus 로고    scopus 로고
    • Finding multiple coherent biclusters in microarray data using variable string length multiobjective genetic algorithm
    • Maulik U, Mukhopadhyay A, Bandyopadhyay S. Finding multiple coherent biclusters in microarray data using variable string length multiobjective genetic algorithm. IEEE Tran Inform Technol Biomed 2009; 13(6): 969-975.
    • (2009) IEEE Tran Inform Technol Biomed , vol.13 , Issue.6 , pp. 969-975
    • Maulik, U.1    Mukhopadhyay, A.2    Bandyopadhyay, S.3
  • 81
    • 0034710876 scopus 로고    scopus 로고
    • Coupled two-way clustering analysis of gene microarray data
    • Getz G, Levine E, Domany E. Coupled two-way clustering analysis of gene microarray data. Proc Nat Acad Sci USA 2000; 97(22): 12079-12084.
    • (2000) Proc Nat Acad Sci USA , vol.97 , Issue.22 , pp. 12079-12084
    • Getz, G.1    Levine, E.2    Domany, E.3
  • 83
    • 11244306358 scopus 로고    scopus 로고
    • Discovering statistically significant biclusters in gene expression data
    • Tanay A, Sharan R, Shamir R. Discovering statistically significant biclusters in gene expression data. Bioinformatics 2002; 18(suppl1): S136-S144.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1
    • Tanay, A.1    Sharan, R.2    Shamir, R.3
  • 84
    • 27544465829 scopus 로고    scopus 로고
    • Biclustering of expression data using simulated annealing
    • CBMS'05. Washington, DC, USA: IEEE Computer Society
    • Bryan K. Biclustering of expression data using simulated annealing. In: Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems. CBMS'05. Washington, DC, USA: IEEE Computer Society; 2005; p. 383-388.
    • (2005) Proceedings of the 18th IEEE Symposium On Computer-Based Medical Systems , pp. 383-388
    • Bryan, K.1
  • 86
    • 33748417841 scopus 로고    scopus 로고
    • Multi-objective evolutionary biclustering of gene expression data
    • Mitra S, Banka H. Multi-objective evolutionary biclustering of gene expression data. Patt Recogn 2006; 39(12): 2464-2477.
    • (2006) Patt Recogn , vol.39 , Issue.12 , pp. 2464-2477
    • Mitra, S.1    Banka, H.2
  • 87
    • 34547602344 scopus 로고    scopus 로고
    • Possibilistic approach for biclustering microarray data
    • Cano C, Adarve L, Lopez J, Blanco A. Possibilistic approach for biclustering microarray data. Comput Biol Med 2007; 37(10): 1426-1436.
    • (2007) Comput Biol Med , vol.37 , Issue.10 , pp. 1426-1436
    • Cano, C.1    Adarve, L.2    Lopez, J.3    Blanco, A.4
  • 88
    • 0242690489 scopus 로고    scopus 로고
    • Discovering local structure in gene expression data: The order-preserving submatrix problem
    • Ben-Dor A, Chor B, Karp R, et al. Discovering local structure in gene expression data: the order-preserving submatrix problem. J Comput Biol 2003; 10(3-4): 373-384.
    • (2003) J Comput Biol , vol.10 , Issue.3-4 , pp. 373-384
    • Ben-Dor, A.1    Chor, B.2    Karp, R.3
  • 89
    • 26844449859 scopus 로고    scopus 로고
    • Gene expression biclustering using random walk strategies
    • In: Tjoa AM, Trujillo J, eds, Springer Berlin Heidelberg
    • Angiulli F, Pizzuti C. Gene expression biclustering using random walk strategies. In: Tjoa AM, Trujillo J, eds. Data Warehousing and Knowledge Discovery. Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2005; 3589: p. 509-519.
    • (2005) Data Warehousing and Knowledge Discovery. Lecture Notes In Computer Science , vol.3589 , pp. 509-519
    • Angiulli, F.1    Pizzuti, C.2
  • 90
    • 33746208817 scopus 로고    scopus 로고
    • Interrelated two-way clustering and its application on gene expression data
    • Tang C, Zhang A. Interrelated two-way clustering and its application on gene expression data. Intl J Artificial Intel Tools 2005; 14(4): 577-597.
    • (2005) Intl J Artificial Intel Tools , vol.14 , Issue.4 , pp. 577-597
    • Tang, C.1    Zhang, A.2
  • 92
    • 22544432531 scopus 로고    scopus 로고
    • Noise-robust soft clustering of gene expression time-course data
    • Futschik ME, Carlisle B. Noise-robust soft clustering of gene expression time-course data. J Bioinform Comput Biol 2005; 3(4): 965-988.
    • (2005) J Bioinform Comput Biol , vol.3 , Issue.4 , pp. 965-988
    • Futschik, M.E.1    Carlisle, B.2
  • 93
    • 78149241880 scopus 로고    scopus 로고
    • A simple and fast method to determine the parameters for fuzzy c means cluster analysis
    • Schwämmle V, Jensen ON. A simple and fast method to determine the parameters for fuzzy c means cluster analysis. Bioinformatics 2010; 26(22): 2841-2848.
    • (2010) Bioinformatics , vol.26 , Issue.22 , pp. 2841-2848
    • Schwämmle, V.1    Jensen, O.N.2
  • 94
    • 0001702254 scopus 로고
    • Cluster validity for fuzzy clustering algorithms
    • Windham MP. Cluster validity for fuzzy clustering algorithms. Fuzzy Sets Syst 1981; 5(2): 177-185.
    • (1981) Fuzzy Sets Syst , vol.5 , Issue.2 , pp. 177-185
    • Windham, M.P.1
  • 95
    • 0030141444 scopus 로고    scopus 로고
    • Validating fuzzy partitions obtained through c-shells clustering
    • Dave RN. Validating fuzzy partitions obtained through c-shells clustering. Patt Recogn Lett 1996; 17(6): 613-623.
    • (1996) Patt Recogn Lett , vol.17 , Issue.6 , pp. 613-623
    • Dave, R.N.1
  • 96
    • 9544250381 scopus 로고    scopus 로고
    • A cluster validation index for GK cluster analysis based on relative degree of sharing
    • Kim YI, Kim DW, Lee D, et al. A cluster validation index for GK cluster analysis based on relative degree of sharing. Inf Sci Inf Comput Sci 2004; 168(1-4): 225-242.
    • (2004) Inf Sci Inf Comput Sci , vol.168 , Issue.1-4 , pp. 225-242
    • Kim, Y.I.1    Kim, D.W.2    Lee, D.3
  • 97
    • 0742320762 scopus 로고    scopus 로고
    • Rule-base self-generation and simplification for data-driven fuzzy models
    • Chen MY, Linkens DA. Rule-base self-generation and simplification for data-driven fuzzy models. Fuzzy Sets Syst 2004; 142(2): 243-265.
    • (2004) Fuzzy Sets Syst , vol.142 , Issue.2 , pp. 243-265
    • Chen, M.Y.1    Linkens, D.A.2
  • 98
    • 0001404416 scopus 로고
    • A new method of choosing the number of clusters for the fuzzy c-means method
    • Fukuyama Y, Sugeno M. A new method of choosing the number of clusters for the fuzzy c-means method. In: Proc. 5th Fuzzy Syst Symp 1989; p. 247-250.
    • (1989) Proc. 5th Fuzzy Syst Symp , pp. 247-250
    • Fukuyama, Y.1    Sugeno, M.2
  • 99
    • 0026204245 scopus 로고
    • A validity measure for fuzzy clustering
    • Xie XL, Beni G. A validity measure for fuzzy clustering. IEEE Trans Patt Anal Mach Intell 1991; 13(8): 841-847.
    • (1991) IEEE Trans Patt Anal Mach Intell , vol.13 , Issue.8 , pp. 841-847
    • Xie, X.L.1    Beni, G.2
  • 100
    • 0029360028 scopus 로고
    • On cluster validity for the fuzzy c-means model
    • Pal NR, Bezdek JC. On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst 1995; 3(7): 370-379.
    • (1995) IEEE Trans Fuzzy Syst , vol.3 , Issue.7 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 101
  • 102
    • 0032178397 scopus 로고    scopus 로고
    • Cluster validity index for fuzzy clustering
    • Kwon SH. Cluster validity index for fuzzy clustering. Electro Lett 1998; 34(22): 2176-2177.
    • (1998) Electro Lett , vol.34 , Issue.22 , pp. 2176-2177
    • Kwon, S.H.1
  • 105
    • 18444403761 scopus 로고    scopus 로고
    • A cluster validity index for fuzzy clustering
    • Wu KL, Yang MS. A cluster validity index for fuzzy clustering. Patt Recogn Lett 2005; 26(9): 1275-1291.
    • (2005) Patt Recogn Lett , vol.26 , Issue.9 , pp. 1275-1291
    • Wu, K.L.1    Yang, M.S.2
  • 106
    • 77957870107 scopus 로고    scopus 로고
    • A cluster validity index for fuzzy clustering
    • Rezaee B. A cluster validity index for fuzzy clustering. Fuzzy Sets Syst 2010; 161(23): 3014-3025.
    • (2010) Fuzzy Sets Syst , vol.161 , Issue.23 , pp. 3014-3025
    • Rezaee, B.1
  • 107
    • 36549068285 scopus 로고    scopus 로고
    • A cluster validity index for fuzzy clustering
    • Zhang Y, Wang W, Zhang X, et al. A cluster validity index for fuzzy clustering. Inf Sci 2008; 178(4): 1205-1218.
    • (2008) Inf Sci , vol.178 , Issue.4 , pp. 1205-1218
    • Zhang, Y.1    Wang, W.2    Zhang, X.3
  • 108
    • 34547434740 scopus 로고    scopus 로고
    • On fuzzy cluster validity indices
    • Wang W, Zhang Y. On fuzzy cluster validity indices. Fuzzy Sets Syst 2007; 158(19): 2095-2117.
    • (2007) Fuzzy Sets Syst , vol.158 , Issue.19 , pp. 2095-2117
    • Wang, W.1    Zhang, Y.2
  • 109
  • 110
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DeRisi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997; 278(5338): 680-686.
    • (1997) Science , vol.278 , Issue.5338 , pp. 680-686
    • Derisi, J.L.1    Iyer, V.R.2    Brown, P.O.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.