메뉴 건너뛰기




Volumn 47, Issue 1, 2008, Pages 17-36

Machine learning-based receiver operating characteristic (ROC) curves for crisp and fuzzy classification of DNA microarrays in cancer research

Author keywords

Area under the curve (AUC); DNA microarrays; Fuzzy classification; Gene expression; Receiver operator characteristic (ROC) curve; Soft computing

Indexed keywords

CLASSIFICATION (OF INFORMATION); DNA SEQUENCES; GENE EXPRESSION; MICROARRAYS; NEURAL NETWORKS; RADIAL BASIS FUNCTION NETWORKS; SUPPORT VECTOR MACHINES;

EID: 36248940832     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2007.03.006     Document Type: Article
Times cited : (42)

References (35)
  • 1
    • 33646234749 scopus 로고    scopus 로고
    • A simple method for assessing sample sizes in microarray experiments
    • Tibshirani R.J. A simple method for assessing sample sizes in microarray experiments. BMC Bioinformatics 7 1 (2006) 106
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 106
    • Tibshirani, R.J.1
  • 3
    • 33645324706 scopus 로고    scopus 로고
    • An interactive power analysis tool for microarray hypothesis testing and generation
    • Seo J., Gordish-Dressman H., and Hoffman E.P. An interactive power analysis tool for microarray hypothesis testing and generation. Bioinformatics 22 7 (2006) 808-814
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 808-814
    • Seo, J.1    Gordish-Dressman, H.2    Hoffman, E.P.3
  • 4
    • 27344457150 scopus 로고    scopus 로고
    • Split-plot microarray experiments: issues of design, power and sample size
    • Tsai P.W., and Lee M.L. Split-plot microarray experiments: issues of design, power and sample size. Appl. Bioinformatics 4 3 (2005) 187-194
    • (2005) Appl. Bioinformatics , vol.4 , Issue.3 , pp. 187-194
    • Tsai, P.W.1    Lee, M.L.2
  • 5
    • 23244433960 scopus 로고    scopus 로고
    • FDR-controlling testing procedures and sample size determination for microarrays
    • Li S.S., Bigler J., Lampe J.W., Potter J.D., and Feng Z. FDR-controlling testing procedures and sample size determination for microarrays. Stat. Med. 24 15 (2005) 2267-2280
    • (2005) Stat. Med. , vol.24 , Issue.15 , pp. 2267-2280
    • Li, S.S.1    Bigler, J.2    Lampe, J.W.3    Potter, J.D.4    Feng, Z.5
  • 6
    • 21644451292 scopus 로고    scopus 로고
    • Sample size calculation for multiple testing in microarray data analysis
    • Jung S.H., Bang H., and Young S. Sample size calculation for multiple testing in microarray data analysis. Biostatistics 6 1 (2005) 157-169
    • (2005) Biostatistics , vol.6 , Issue.1 , pp. 157-169
    • Jung, S.H.1    Bang, H.2    Young, S.3
  • 7
    • 4544298732 scopus 로고    scopus 로고
    • Sample size for identifying differentially expressed genes in microarray experiments
    • Wang S.J., and Chen J.J. Sample size for identifying differentially expressed genes in microarray experiments. J. Comput. Biol. 11 4 (2004) 714-726
    • (2004) J. Comput. Biol. , vol.11 , Issue.4 , pp. 714-726
    • Wang, S.J.1    Chen, J.J.2
  • 8
    • 17444387485 scopus 로고    scopus 로고
    • Sample size for gene expression microarray experiments
    • Tsai C.A., Wang S.J., Chen D.T., and Chen J.J. Sample size for gene expression microarray experiments. Bioinformatics 21 8 (2005) 1502-1508
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1502-1508
    • Tsai, C.A.1    Wang, S.J.2    Chen, D.T.3    Chen, J.J.4
  • 9
    • 9444266425 scopus 로고    scopus 로고
    • Sample size for detecting differentially expressed genes in microarray experiments
    • Wei C., Li J., and Bumgarner R.E. Sample size for detecting differentially expressed genes in microarray experiments. BMC Genomics 5 1 (2004) 87
    • (2004) BMC Genomics , vol.5 , Issue.1 , pp. 87
    • Wei, C.1    Li, J.2    Bumgarner, R.E.3
  • 10
    • 0036738906 scopus 로고    scopus 로고
    • Determination of minimum sample size and discriminatory expression patterns in microarray data
    • Hwang D., Schmitt W.A., Stephanopoulos G., and Stephanopoulos G. Determination of minimum sample size and discriminatory expression patterns in microarray data. Bioinformatics 18 9 (2002) 1184-1193
    • (2002) Bioinformatics , vol.18 , Issue.9 , pp. 1184-1193
    • Hwang, D.1    Schmitt, W.A.2    Stephanopoulos, G.3    Stephanopoulos, G.4
  • 14
    • 0035931947 scopus 로고    scopus 로고
    • Gene-expression profiles in hereditary breast cancer
    • Hedenfalk I., Duggan D., Chen Y., et al. Gene-expression profiles in hereditary breast cancer. New Engl. J. Med. 344 (2001) 539-548
    • (2001) New Engl. J. Med. , vol.344 , pp. 539-548
    • Hedenfalk, I.1    Duggan, D.2    Chen, Y.3
  • 16
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., Barkai N., Notterman D.A., Gish K., Ybarra S., Mack D., and Levine A.J. Broad patterns of gene expression revealed by clustering of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96 12 (1999) 6745-6750
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 20
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • Gordon G.J., Jensen R.V., Hsiao L.L., Gullans S.R., Blumenstock J.E., Ramaswamy S., Richards W.G., Sugarbaker D.J., and Bueno R. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 62 17 (2002) 4963-5967
    • (2002) Cancer Res. , vol.62 , Issue.17 , pp. 4963-5967
    • Gordon, G.J.1    Jensen, R.V.2    Hsiao, L.L.3    Gullans, S.R.4    Blumenstock, J.E.5    Ramaswamy, S.6    Richards, W.G.7    Sugarbaker, D.J.8    Bueno, R.9
  • 29
    • 0029535737 scopus 로고    scopus 로고
    • J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, 1995, pp. 1942-1948.
  • 30
    • 33745149670 scopus 로고    scopus 로고
    • Evaluation of particle swarm optimization effectiveness in classification
    • De Falco I., Della Cioppa A., and Tarantino E. Evaluation of particle swarm optimization effectiveness in classification. Lect. Notes Comput. Sci. 3849 (2006) 164-171
    • (2006) Lect. Notes Comput. Sci. , vol.3849 , pp. 164-171
    • De Falco, I.1    Della Cioppa, A.2    Tarantino, E.3
  • 34
    • 33646733849 scopus 로고    scopus 로고
    • Optimized particle swarm optimization and its application to artificial neural network training
    • Meissner M., Schmuker M., and Schneider G. Optimized particle swarm optimization and its application to artificial neural network training. BMC Bioinformatics 7 (2006) 125-136
    • (2006) BMC Bioinformatics , vol.7 , pp. 125-136
    • Meissner, M.1    Schmuker, M.2    Schneider, G.3
  • 35
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm - explosion, stability, and convergence in a multidimensional complex space
    • Clerc M., and Kennedy J. The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6 (2002) 58-73
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.