-
1
-
-
11144239782
-
Nanotechnology and biosensors.
-
Jianrong, C., Yuqing, M., Nongyue, H., Xiaohua, W. et al., Nanotechnology and biosensors. Biotechnol. Adv. 2004, 22, 505-518.
-
(2004)
Biotechnol. Adv.
, vol.22
, pp. 505-518
-
-
Jianrong, C.1
Yuqing, M.2
Nongyue, H.3
Xiaohua, W.4
-
2
-
-
76449091462
-
Review: Carbon nanotube based electrochemical sensors for biomolecules.
-
Jacobs, C., Peairs, M., Venton, B., Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010, 662, 105-127.
-
(2010)
Anal. Chim. Acta
, vol.662
, pp. 105-127
-
-
Jacobs, C.1
Peairs, M.2
Venton, B.3
-
3
-
-
0034158429
-
Biosensors and biochips: advances in biological and medical diagnostics.
-
Vo-Dinh, T., Cullum, B., Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J. Anal. Chem. 2000, 366, 540-551.
-
(2000)
Fresenius J. Anal. Chem.
, vol.366
, pp. 540-551
-
-
Vo-Dinh, T.1
Cullum, B.2
-
4
-
-
17144364673
-
Nanomaterial-based electrochemical biosensors.
-
Wang, J., Nanomaterial-based electrochemical biosensors. Analyst 2005, 130, 421-426.
-
(2005)
Analyst
, vol.130
, pp. 421-426
-
-
Wang, J.1
-
5
-
-
0026900015
-
Detection of vapours and odours from a multisensor array using pattern-recognition techniques Part 2. Artificial neural networks.
-
Gardner, J. W., Hines, E. L., Tang, H. C., Detection of vapours and odours from a multisensor array using pattern-recognition techniques Part 2. Artificial neural networks. Sens. Actuators B 1992, 9, 9-15.
-
(1992)
Sens. Actuators B
, vol.9
, pp. 9-15
-
-
Gardner, J.W.1
Hines, E.L.2
Tang, H.C.3
-
6
-
-
58649092407
-
Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose.
-
Kim, T. H., Lee, S. H., Lee, J., Song, H. S. et al., Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv. Mater. 2009, 21, 91-94.
-
(2009)
Adv. Mater.
, vol.21
, pp. 91-94
-
-
Kim, T.H.1
Lee, S.H.2
Lee, J.3
Song, H.S.4
-
7
-
-
33644550597
-
Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased schottky contact area for highly sensitive biosensor applications.
-
Byon, H. R., Choi, H. C., Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased schottky contact area for highly sensitive biosensor applications. J. Am. Chem. Soc. 2006, 128, 2188-2189.
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 2188-2189
-
-
Byon, H.R.1
Choi, H.C.2
-
8
-
-
0037357723
-
Integration of cell culture and microfabrication technology.
-
Park, T. H., Shuler, M. L., Integration of cell culture and microfabrication technology. Biotechnol. Prog. 2003, 19, 243-253.
-
(2003)
Biotechnol. Prog.
, vol.19
, pp. 243-253
-
-
Park, T.H.1
Shuler, M.L.2
-
9
-
-
0042365163
-
Chemical and biochemical sensing with modified single walled carbon nanotubes.
-
Davis, J., Coleman, K., Azamian, B., Bagshaw, C. et al., Chemical and biochemical sensing with modified single walled carbon nanotubes. Chem. Eur. J. 2003, 9, 3732-3739.
-
(2003)
Chem. Eur. J.
, vol.9
, pp. 3732-3739
-
-
Davis, J.1
Coleman, K.2
Azamian, B.3
Bagshaw, C.4
-
10
-
-
0036523448
-
Novel carbon materials in biosensor systems.
-
Sotiropoulou, S., Gavalas, V., Vamvakaki, V., Chaniotakis, N. A., Novel carbon materials in biosensor systems. Biosens. Bioelectron. 2003, 18, 211-215.
-
(2003)
Biosens. Bioelectron.
, vol.18
, pp. 211-215
-
-
Sotiropoulou, S.1
Gavalas, V.2
Vamvakaki, V.3
Chaniotakis, N.A.4
-
11
-
-
50549101330
-
Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires.
-
Lee, M., Im, J., Lee, B. Y., Myung, S. et al., Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires. Nat. Nanotechnol. 2006, 1, 66-71.
-
(2006)
Nat. Nanotechnol.
, vol.1
, pp. 66-71
-
-
Lee, M.1
Im, J.2
Lee, B.Y.3
Myung, S.4
-
12
-
-
11244306001
-
Large-scale fabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly.
-
Gao, J., Yu, A., Itkis, M. E., Bekyarova, E. et al., Large-scale fabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly. J. Am. Chem. Soc. 2004, 126, 16698-16699.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 16698-16699
-
-
Gao, J.1
Yu, A.2
Itkis, M.E.3
Bekyarova, E.4
-
13
-
-
0041822001
-
Nanotube electronics: Large-scale assembly of carbon nanotubes.
-
Rao, S. G., Huang, L., Setyawan, W., Hong, S., Nanotube electronics: Large-scale assembly of carbon nanotubes. Nature 2003, 425, 36-37.
-
(2003)
Nature
, vol.425
, pp. 36-37
-
-
Rao, S.G.1
Huang, L.2
Setyawan, W.3
Hong, S.4
-
14
-
-
0037418895
-
Ultrahigh-density nanowire lattices and circuits.
-
Melosh, N. A., Boukai, A., Diana, F., Gerardot, B. et al., Ultrahigh-density nanowire lattices and circuits. Science 2003, 300, 112.
-
(2003)
Science
, vol.300
, pp. 112
-
-
Melosh, N.A.1
Boukai, A.2
Diana, F.3
Gerardot, B.4
-
15
-
-
16244388903
-
Controlled growth of Si nanowire arrays for device integration.
-
Hochbaum, A. I., Fan, R., He, R., Yang, P., Controlled growth of Si nanowire arrays for device integration. Nano Lett. 2005, 5, 457-460.
-
(2005)
Nano Lett.
, vol.5
, pp. 457-460
-
-
Hochbaum, A.I.1
Fan, R.2
He, R.3
Yang, P.4
-
16
-
-
0032498174
-
A laser ablation method for the synthesis of crystalline semiconductor nanowires.
-
Morales, A. M., Lieber, C. M., A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208.
-
(1998)
Science
, vol.279
, pp. 208
-
-
Morales, A.M.1
Lieber, C.M.2
-
17
-
-
33846695595
-
Label-free immunodetection with CMOS-compatible semiconducting nanowires.
-
Stern, E., Klemic, J. F., Routenberg, D. A., Wyrembak, P. N. et al., Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007, 445, 519-522.
-
(2007)
Nature
, vol.445
, pp. 519-522
-
-
Stern, E.1
Klemic, J.F.2
Routenberg, D.A.3
Wyrembak, P.N.4
-
18
-
-
44949151547
-
Fabrication of suspended silicon nanowire arrays.
-
Lee, K. N., Jung, S. W., Shin, K. S., Kim, W.H. et al., Fabrication of suspended silicon nanowire arrays. Small 2008, 4, 642-648.
-
(2008)
Small
, vol.4
, pp. 642-648
-
-
Lee, K.N.1
Jung, S.W.2
Shin, K.S.3
Kim, W.H.4
-
19
-
-
36048999530
-
Well controlled assembly of silicon nanowires by nanowire transfer method.
-
Lee, K. N., Jung, S. W., Kim, W. H., Lee, M. H. et al., Well controlled assembly of silicon nanowires by nanowire transfer method. Nanotechnology 2007, 18, 445302.
-
(2007)
Nanotechnology
, vol.18
, pp. 445302
-
-
Lee, K.N.1
Jung, S.W.2
Kim, W.H.3
Lee, M.H.4
-
20
-
-
66449122269
-
Conducting-polymer nanomaterials for high-performance sensor applications: issues and challenges.
-
Yoon, H., Jang, J., Conducting-polymer nanomaterials for high-performance sensor applications: issues and challenges. Adv. Funct. Mater. 2009, 19, 1567-1576.
-
(2009)
Adv. Funct. Mater.
, vol.19
, pp. 1567-1576
-
-
Yoon, H.1
Jang, J.2
-
21
-
-
34249865598
-
Protein immobilization on aminated poly (glycidyl methacrylate) nanofibers as polymeric carriers.
-
Ko, S., Jang, J., Protein immobilization on aminated poly (glycidyl methacrylate) nanofibers as polymeric carriers. Biomacromolecules 2007, 8, 1400-1403.
-
(2007)
Biomacromolecules
, vol.8
, pp. 1400-1403
-
-
Ko, S.1
Jang, J.2
-
22
-
-
34547363110
-
Fabrication of water-dispersible polyaniline-poly (4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications.
-
Jang, J., Ha, J., Cho, J., Fabrication of water-dispersible polyaniline-poly (4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications. Adv. Mater. 2007, 19, 1772-1775.
-
(2007)
Adv. Mater.
, vol.19
, pp. 1772-1775
-
-
Jang, J.1
Ha, J.2
Cho, J.3
-
23
-
-
33847083584
-
Formation of 1D Poly (3,4 ethylenedioxythiophene) nanomaterials in reverse microemulsions and their application to chemical sensors.
-
Yoon, H., Chang, M., Jang, J., Formation of 1D Poly (3, 4 ethylenedioxythiophene) nanomaterials in reverse microemulsions and their application to chemical sensors. Adv. Funct. Mater. 2007, 17, 431-436.
-
(2007)
Adv. Funct. Mater.
, vol.17
, pp. 431-436
-
-
Yoon, H.1
Chang, M.2
Jang, J.3
-
24
-
-
34548497619
-
Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors.
-
Ekanayake, E. M. I., Preethichandra, D. M. G., Kaneto, K., Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. Biosens. Bioelectron. 2007, 23, 107-113.
-
(2007)
Biosens. Bioelectron.
, vol.23
, pp. 107-113
-
-
Ekanayake, E.M.I.1
Preethichandra, D.M.G.2
Kaneto, K.3
-
25
-
-
80855133306
-
Conductive polymer-based sensors for biomedical applications.
-
DOI: 10.j.bios.2010.09.046
-
Nambiar, S., Yeow, J. T. W., Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 2010, DOI: 10.j.bios.2010.09.046.
-
(2010)
Biosens. Bioelectron.
-
-
Nambiar, S.1
Yeow, J.T.W.2
-
26
-
-
73449145073
-
Hsp90-functionalized polypyrrole nanotube FET sensor for anti-cancer agent detection.
-
Kwon, O. S., Hong, T. J., Kim, S. K., Jeong, J. H. et al., Hsp90-functionalized polypyrrole nanotube FET sensor for anti-cancer agent detection. Biosens. Bioelectron. 2010, 25, 1307-1312.
-
(2010)
Biosens. Bioelectron.
, vol.25
, pp. 1307-1312
-
-
Kwon, O.S.1
Hong, T.J.2
Kim, S.K.3
Jeong, J.H.4
-
27
-
-
33645506185
-
Nanowire Based Electrochemical Biosensors.
-
Wanekaya, A., Chen, W., Myung, N., Mulchandani, A., Nanowire Based Electrochemical Biosensors. Electroanalysis 2006, 18, 533-550.
-
(2006)
Electroanalysis
, vol.18
, pp. 533-550
-
-
Wanekaya, A.1
Chen, W.2
Myung, N.3
Mulchandani, A.4
-
28
-
-
47849121508
-
Nanomaterial-based electrochemical biosensors for medical applications.
-
Kerman, K., Saito, M., Tamiya, E., Yamamura, S. et al., Nanomaterial-based electrochemical biosensors for medical applications. TrAC-Trend. Anal. Chem. 2008, 27, 585-592.
-
(2008)
TrAC-Trend. Anal. Chem.
, vol.27
, pp. 585-592
-
-
Kerman, K.1
Saito, M.2
Tamiya, E.3
Yamamura, S.4
-
29
-
-
34547286534
-
Carbon nanotube field effect transistor based biosensors.
-
Allen, B. L., Kichambare, P. D., Star, A., Carbon nanotube field effect transistor based biosensors. Adv. Mater. 2007, 19, 1439-1451.
-
(2007)
Adv. Mater.
, vol.19
, pp. 1439-1451
-
-
Allen, B.L.1
Kichambare, P.D.2
Star, A.3
-
30
-
-
33645210616
-
Piezoelectric biosensor using olfactory receptor protein expressed in Escherichia coli.
-
Sung, J. H., Ko, H. J., Park, T. H., Piezoelectric biosensor using olfactory receptor protein expressed in Escherichia coli. Biosens. Bioelectron. 2006, 21, 1981-1986.
-
(2006)
Biosens. Bioelectron.
, vol.21
, pp. 1981-1986
-
-
Sung, J.H.1
Ko, H.J.2
Park, T.H.3
-
31
-
-
10044278974
-
Piezoelectric olfactory biosensor: ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system.
-
Ko, H. J., Park, T. H., Piezoelectric olfactory biosensor: ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system. Biosens. Bioelectron. 2005, 20, 1327-1332.
-
(2005)
Biosens. Bioelectron.
, vol.20
, pp. 1327-1332
-
-
Ko, H.J.1
Park, T.H.2
-
32
-
-
33746534801
-
Quantitative assessment of olfactory receptors activity in immobilized nanosomes: a novel concept for bioelectronic nose.
-
Vidic, J., Grosclaude, J., Persuy, M., Aioun, J. et al., Quantitative assessment of olfactory receptors activity in immobilized nanosomes: a novel concept for bioelectronic nose. Lab Chip 2006, 6, 1026-1032.
-
(2006)
Lab Chip
, vol.6
, pp. 1026-1032
-
-
Vidic, J.1
Grosclaude, J.2
Persuy, M.3
Aioun, J.4
-
33
-
-
35748938774
-
A new concept of olfactory biosensor based on interdigitated microelectrodes and immobilized yeasts expressing the human receptor OR17-40.
-
Marrakchi, M., Vidic, J., Jaffrezic-Renault, N., Martelet, C. et al., A new concept of olfactory biosensor based on interdigitated microelectrodes and immobilized yeasts expressing the human receptor OR17-40. Eur. Biophys. J. 2007, 36, 1015-1018.
-
(2007)
Eur. Biophys. J.
, vol.36
, pp. 1015-1018
-
-
Marrakchi, M.1
Vidic, J.2
Jaffrezic-Renault, N.3
Martelet, C.4
-
34
-
-
70449810183
-
Enhancement of cellular olfactory signal by electrical stimulation.
-
Lee, S. H., Jeong, S. B., Jun, S. J., Kim, S. J. et al., Enhancement of cellular olfactory signal by electrical stimulation. Electrophoresis 2009, 30, 3283-3288.
-
(2009)
Electrophoresis
, vol.30
, pp. 3283-3288
-
-
Lee, S.H.1
Jeong, S.B.2
Jun, S.J.3
Kim, S.J.4
-
35
-
-
0034322569
-
Enzyme monolayer-functionalized field-effect transistors for biosensor applications.
-
Kharitonov, A. B., Zayats, M., Lichtenstein, A., Katz, E. et al., Enzyme monolayer-functionalized field-effect transistors for biosensor applications. Sens. Actuators B 2000, 70, 222-231.
-
(2000)
Sens. Actuators B
, vol.70
, pp. 222-231
-
-
Kharitonov, A.B.1
Zayats, M.2
Lichtenstein, A.3
Katz, E.4
-
36
-
-
0141521856
-
Enzyme-coated carbon nanotubes as single-molecule biosensors.
-
Besteman, K., Lee, J.-O., Wiertz, F. G. M., Heering, H. A. et al., Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 2003, 3, 727-730.
-
(2003)
Nano Lett.
, vol.3
, pp. 727-730
-
-
Besteman, K.1
Lee, J.-O.2
Wiertz, F.G.M.3
Heering, H.A.4
-
37
-
-
33746587444
-
Glucose oxidase anode for biofuel cell based on direct electron transfer.
-
Ivnitski, D., Branch, B., Atanassov, P., Apblett, C., Glucose oxidase anode for biofuel cell based on direct electron transfer. Electrochem. Commun. 2006, 8, 1204-1210.
-
(2006)
Electrochem. Commun.
, vol.8
, pp. 1204-1210
-
-
Ivnitski, D.1
Branch, B.2
Atanassov, P.3
Apblett, C.4
-
38
-
-
78649918633
-
Glucose driven nanobiopower cells for biomedical applications.
-
Rai, P., Ho, T., Xie, J., Hestekin, J. A. et al., Glucose driven nanobiopower cells for biomedical applications. J. Nanotechnol. Eng. Med. 2010, 1, 021009.
-
(2010)
J. Nanotechnol. Eng. Med.
, vol.1
, pp. 021009
-
-
Rai, P.1
Ho, T.2
Xie, J.3
Hestekin, J.A.4
-
39
-
-
0036802211
-
Direct electron transfer of glucose oxidase on carbon nanotubes.
-
Guiseppi-Elie, A., Lei, C., Baughman, R. H., Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 2002, 13, 559-564.
-
(2002)
Nanotechnology
, vol.13
, pp. 559-564
-
-
Guiseppi-Elie, A.1
Lei, C.2
Baughman, R.H.3
-
40
-
-
50549101728
-
Field-effect-transistor sensor based on enzyme-functionalized polypyrrole nanotubes for glucose detection.
-
Yoon, H., Ko, S., Jang, J., Field-effect-transistor sensor based on enzyme-functionalized polypyrrole nanotubes for glucose detection. J. Phys. Chem. B 2008, 112, 9992-9997.
-
(2008)
J. Phys. Chem. B
, vol.112
, pp. 9992-9997
-
-
Yoon, H.1
Ko, S.2
Jang, J.3
-
41
-
-
34248590308
-
Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube.
-
Pereira, A. C., Aguiar, M. R., Kisner, A., Macedo, D. V. et al., Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube. Sens. Actuators B 2007, 124, 269-276.
-
(2007)
Sens. Actuators B
, vol.124
, pp. 269-276
-
-
Pereira, A.C.1
Aguiar, M.R.2
Kisner, A.3
Macedo, D.V.4
-
42
-
-
46149102221
-
Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors.
-
Carrar, S., Shumyantseva, V. V., Archakov, A. I., Samori, B., Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors. Biosens. Bioelectron. 2008, 148-150.
-
(2008)
Biosens. Bioelectron.
, pp. 148-150
-
-
Carrar, S.1
Shumyantseva, V.V.2
Archakov, A.I.3
Samori, B.4
-
43
-
-
64549085346
-
Preparation of multiwalled carbon nanotube-chitosan-alcohol dehydrogenase nanobiocomposite for amperometric detection of ethanol.
-
Lee, C. A., Tsai, Y. C., Preparation of multiwalled carbon nanotube-chitosan-alcohol dehydrogenase nanobiocomposite for amperometric detection of ethanol. Sen. Actuators B 2009, 138, 518-523.
-
(2009)
Sen. Actuators B
, vol.138
, pp. 518-523
-
-
Lee, C.A.1
Tsai, Y.C.2
-
44
-
-
51649108478
-
A thin-film transistor based acetylcholine sensor using self-assembled carbon nanotubes and SiO2 nanoparticles.
-
Xue, W., Cui, T., A thin-film transistor based acetylcholine sensor using self-assembled carbon nanotubes and SiO2 nanoparticles. Sens. Actuators B 2008, 134, 981-987.
-
(2008)
Sens. Actuators B
, vol.134
, pp. 981-987
-
-
Xue, W.1
Cui, T.2
-
45
-
-
34248635700
-
Amperometric biosensing of glutamate using carbon nanotube based electrode.
-
Chakraborty, S., Retna Raj, C., Amperometric biosensing of glutamate using carbon nanotube based electrode. Electrochem. Commun. 2007, 9, 1323-1330.
-
(2007)
Electrochem. Commun.
, vol.9
, pp. 1323-1330
-
-
Chakraborty, S.1
Retna Raj, C.2
-
46
-
-
0028224199
-
High-resolution molecular discrimination by RNA.
-
Jenison, R. D., Gill, S. C., Pardi, A., Polisky, B., High-resolution molecular discrimination by RNA. Science 1993, 263, 1425-1429.
-
(1993)
Science
, vol.263
, pp. 1425-1429
-
-
Jenison, R.D.1
Gill, S.C.2
Pardi, A.3
Polisky, B.4
-
47
-
-
0025194307
-
Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase.
-
Tuerk, C., Gold, L., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505-510.
-
(1990)
Science
, vol.249
, pp. 505-510
-
-
Tuerk, C.1
Gold, L.2
-
48
-
-
18044372281
-
Analytical applications of aptamers.
-
Tombelli, S., Minunni, M., Mascini, M., Analytical applications of aptamers. Biosens. Bioelectron. 2005, 20, 2424-2434.
-
(2005)
Biosens. Bioelectron.
, vol.20
, pp. 2424-2434
-
-
Tombelli, S.1
Minunni, M.2
Mascini, M.3
-
49
-
-
33845267469
-
The blood peptidome: a higher dimension of information content for cancer biomarker discovery.
-
Petricoin, E., Belluco, C., Araujo, R., Liotta, L., The blood peptidome: a higher dimension of information content for cancer biomarker discovery. Nat. Rev. Cancer 2006, 6, 961-967.
-
(2006)
Nat. Rev. Cancer
, vol.6
, pp. 961-967
-
-
Petricoin, E.1
Belluco, C.2
Araujo, R.3
Liotta, L.4
-
50
-
-
33748079490
-
Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers.
-
Yu, X., Munge, B., Patel, V., Jensen, G. et al., Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J. Am. Chem. Soc. 2006, 128, 11199-11205.
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 11199-11205
-
-
Yu, X.1
Munge, B.2
Patel, V.3
Jensen, G.4
-
51
-
-
77951091723
-
A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor.
-
Kwon, O. S., Park, S. J., Jang, J., A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor. Biomaterials 31, 4740-4747.
-
Biomaterials
, vol.31
, pp. 4740-4747
-
-
Kwon, O.S.1
Park, S.J.2
Jang, J.3
-
52
-
-
34548489842
-
Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors.
-
Kim, A., Ah, C. S., Yu, H. Y., Yang, J. H. et al., Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl. Phys. Lett. 2007, 91, 103901-103903.
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 103901-103903
-
-
Kim, A.1
Ah, C.S.2
Yu, H.Y.3
Yang, J.H.4
-
53
-
-
33645951393
-
Use of semiconductor-based oligonucleotide microarrays for influenza A virus subtype identification and sequencing.
-
Lodes, M. J., Suciu, D., Elliott, M., Stover, A. G. et al., Use of semiconductor-based oligonucleotide microarrays for influenza A virus subtype identification and sequencing. J. Clin. Microbiol. 2006, 44, 1209-1218.
-
(2006)
J. Clin. Microbiol.
, vol.44
, pp. 1209-1218
-
-
Lodes, M.J.1
Suciu, D.2
Elliott, M.3
Stover, A.G.4
-
54
-
-
32244440113
-
Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors.
-
Star, A., Tu, E., Niemann, J., Gabriel, J. et al., Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl. Acad. Sci. USA 2006, 103, 921.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 921
-
-
Star, A.1
Tu, E.2
Niemann, J.3
Gabriel, J.4
-
55
-
-
1442275478
-
Sequence-specific label-free DNA sensors based on silicon nanowires.
-
Li, Z., Chen, Y., Li, X., Kamins, T. et al., Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 2004, 4, 245-247.
-
(2004)
Nano Lett.
, vol.4
, pp. 245-247
-
-
Li, Z.1
Chen, Y.2
Li, X.3
Kamins, T.4
-
56
-
-
54549111501
-
Electrochemical monitoring of DNA hybridization by multiwalled carbon nanotube based screen printed electrodes.
-
Karadeniz, H., Erdem, A., Caliskan, A., Electrochemical monitoring of DNA hybridization by multiwalled carbon nanotube based screen printed electrodes. Electroanalysis 2008, 20, 1932-1938.
-
(2008)
Electroanalysis
, vol.20
, pp. 1932-1938
-
-
Karadeniz, H.1
Erdem, A.2
Caliskan, A.3
-
57
-
-
67349142565
-
Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA.
-
Lin, C., Hung, C., Hsiao, C., Lin, H. et al., Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA. Biosens. Bioelectron. 2009, 24, 3019-3024.
-
(2009)
Biosens. Bioelectron.
, vol.24
, pp. 3019-3024
-
-
Lin, C.1
Hung, C.2
Hsiao, C.3
Lin, H.4
-
58
-
-
60549109749
-
Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions.
-
Erdem, A., Karadeniz, H., Caliskan, A., Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions. Electroanalysis 2009, 21, 464-471.
-
(2009)
Electroanalysis
, vol.21
, pp. 464-471
-
-
Erdem, A.1
Karadeniz, H.2
Caliskan, A.3
-
59
-
-
24644507026
-
Peptide nucleic acid-modified carbon nanotube field-effect transistor for ultra-sensitive real-time detection of DNA hybridization.
-
Kerman, K., Morita, Y., Takamura, Y., Tamiya, E. et al., Peptide nucleic acid-modified carbon nanotube field-effect transistor for ultra-sensitive real-time detection of DNA hybridization. Nanobiotechnology 2005, 1, 65-70.
-
(2005)
Nanobiotechnology
, vol.1
, pp. 65-70
-
-
Kerman, K.1
Morita, Y.2
Takamura, Y.3
Tamiya, E.4
-
60
-
-
77953593673
-
Recent advances in the development of bioelectronic nose.
-
Lee, S. H., Park, T. H., Recent advances in the development of bioelectronic nose. Biotec. Bioprces. Eng. 2010, 15, 22-29.
-
(2010)
Biotec. Bioprces. Eng.
, vol.15
, pp. 22-29
-
-
Lee, S.H.1
Park, T.H.2
-
61
-
-
0033886357
-
Bacterial expression of G-protein-coupled receptors: prediction of expression levels from sequence.
-
Kiefer, H., Vogel, R., Maier, K., Bacterial expression of G-protein-coupled receptors: prediction of expression levels from sequence. Receptors Channels 2000, 7, 109-119.
-
(2000)
Receptors Channels
, vol.7
, pp. 109-119
-
-
Kiefer, H.1
Vogel, R.2
Maier, K.3
-
62
-
-
68849096291
-
Expression, solubilization and purification of a human olfactory receptor from Escherichia coli.
-
Song, H. S., Lee, S. H., Oh, E. H., Park, T. H., Expression, solubilization and purification of a human olfactory receptor from Escherichia coli. Curr. Microbiol. 2009, 59, 309-314.
-
(2009)
Curr. Microbiol.
, vol.59
, pp. 309-314
-
-
Song, H.S.1
Lee, S.H.2
Oh, E.H.3
Park, T.H.4
-
63
-
-
59749084058
-
Mammalian G-protein-coupled receptor expression in Escherichia coli: I. High-throughput large-scale production as inclusion bodies.
-
Michalke, K., Graviere, M., Huyghe, C., Vincentelli, R. et al., Mammalian G-protein-coupled receptor expression in Escherichia coli: I. High-throughput large-scale production as inclusion bodies. Anal. Biochem. 2009, 386, 147-155.
-
(2009)
Anal. Biochem.
, vol.386
, pp. 147-155
-
-
Michalke, K.1
Graviere, M.2
Huyghe, C.3
Vincentelli, R.4
-
64
-
-
77951092731
-
Mammalian G protein-coupled receptor expression in Escherichia coli: II. Refolding and biophysical characterization of mouse cannabinoid receptor 1 and human parathyroid hormone receptor 1.
-
Michalke, K., Huyghe, C., Lichiere, J., Graviere, M. E. et al., Mammalian G protein-coupled receptor expression in Escherichia coli: II. Refolding and biophysical characterization of mouse cannabinoid receptor 1 and human parathyroid hormone receptor 1. Anal. Biochem. 2010, 401, 74-80.
-
(2010)
Anal. Biochem.
, vol.401
, pp. 74-80
-
-
Michalke, K.1
Huyghe, C.2
Lichiere, J.3
Graviere, M.E.4
|