-
1
-
-
0037459109
-
Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling
-
Cleveland D.W., et al. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 2003, 112:407-421.
-
(2003)
Cell
, vol.112
, pp. 407-421
-
-
Cleveland, D.W.1
-
2
-
-
37549071893
-
Molecular architecture of the kinetochore-microtubule interface
-
Cheeseman I.M., Desai A. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 2008, 9:33-46.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 33-46
-
-
Cheeseman, I.M.1
Desai, A.2
-
3
-
-
75749117934
-
Mechanisms of force generation by end-on kinetochore-microtubule attachments
-
Joglekar A.P., et al. Mechanisms of force generation by end-on kinetochore-microtubule attachments. Curr. Opin. Cell Biol. 2010, 22:57-67.
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, pp. 57-67
-
-
Joglekar, A.P.1
-
4
-
-
69849107380
-
The life and miracles of kinetochores
-
Santaguida S., Musacchio A. The life and miracles of kinetochores. EMBO J. 2009, 28:2511-2531.
-
(2009)
EMBO J.
, vol.28
, pp. 2511-2531
-
-
Santaguida, S.1
Musacchio, A.2
-
5
-
-
69949117643
-
Ska3 is required for spindle checkpoint silencing and the maintenance of chromosome cohesion in mitosis
-
Daum J.R., et al. Ska3 is required for spindle checkpoint silencing and the maintenance of chromosome cohesion in mitosis. Curr. Biol. 2009, 19:1467-1472.
-
(2009)
Curr. Biol.
, vol.19
, pp. 1467-1472
-
-
Daum, J.R.1
-
6
-
-
66249086063
-
Stable kinetochore-microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3
-
Gaitanos T.N., et al. Stable kinetochore-microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3. EMBO J. 2009, 28:1442-1452.
-
(2009)
EMBO J.
, vol.28
, pp. 1442-1452
-
-
Gaitanos, T.N.1
-
7
-
-
69649106682
-
RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment
-
Raaijmakers J.A., et al. RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment. J. Cell Sci. 2009, 122:2436-2445.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 2436-2445
-
-
Raaijmakers, J.A.1
-
8
-
-
61749084467
-
The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility
-
Welburn J.P., et al. The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev. Cell 2009, 16:374-385.
-
(2009)
Dev. Cell
, vol.16
, pp. 374-385
-
-
Welburn, J.P.1
-
9
-
-
79952523494
-
Aurora B regulates formin mDia3 in achieving metaphase chromosome alignment
-
Cheng L., et al. Aurora B regulates formin mDia3 in achieving metaphase chromosome alignment. Dev. Cell 2011, 20:342-352.
-
(2011)
Dev. Cell
, vol.20
, pp. 342-352
-
-
Cheng, L.1
-
10
-
-
1942455757
-
Cdc42 and mDia3 regulate microtubule attachment to kinetochores
-
Yasuda S., et al. Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature 2004, 428:767-771.
-
(2004)
Nature
, vol.428
, pp. 767-771
-
-
Yasuda, S.1
-
11
-
-
0027324156
-
Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism
-
Skibbens R.V., et al. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J. Cell Biol. 1993, 122:859-875.
-
(1993)
J. Cell Biol.
, vol.122
, pp. 859-875
-
-
Skibbens, R.V.1
-
12
-
-
11144281883
-
Phylogenetic analysis of the formin homology 2 domain
-
Higgs H.N., Peterson K.J. Phylogenetic analysis of the formin homology 2 domain. Mol. Biol. Cell 2005, 16:1-13.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 1-13
-
-
Higgs, H.N.1
Peterson, K.J.2
-
13
-
-
20444381052
-
A comparative sequence analysis reveals a common GBD/FH3-FH1-FH2-DAD architecture in formins from Dictyostelium, fungi and metazoa
-
Rivero F., et al. A comparative sequence analysis reveals a common GBD/FH3-FH1-FH2-DAD architecture in formins from Dictyostelium, fungi and metazoa. BMC Genomics 2005, 6:28.
-
(2005)
BMC Genomics
, vol.6
, pp. 28
-
-
Rivero, F.1
-
15
-
-
72949110575
-
Unleashing formins to remodel the actin and microtubule cytoskeletons
-
Chesarone M.A., et al. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat. Rev. Mol. Cell Biol. 2010, 11:62-74.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 62-74
-
-
Chesarone, M.A.1
-
16
-
-
34248154652
-
Mechanism and function of formins in the control of actin assembly
-
Goode B.L., Eck M.J. Mechanism and function of formins in the control of actin assembly. Annu. Rev. Biochem. 2007, 76:593-627.
-
(2007)
Annu. Rev. Biochem.
, vol.76
, pp. 593-627
-
-
Goode, B.L.1
Eck, M.J.2
-
17
-
-
43149114446
-
The formin mDia2 stabilizes microtubules independently of its actin nucleation activity
-
Bartolini F., et al. The formin mDia2 stabilizes microtubules independently of its actin nucleation activity. J. Cell Biol. 2008, 181:523-536.
-
(2008)
J. Cell Biol.
, vol.181
, pp. 523-536
-
-
Bartolini, F.1
-
18
-
-
4444360489
-
EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration
-
Wen Y., et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat. Cell Biol. 2004, 6:820-830.
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 820-830
-
-
Wen, Y.1
-
19
-
-
1842854468
-
EB1 targets to kinetochores with attached, polymerizing microtubules
-
Tirnauer J.S., et al. EB1 targets to kinetochores with attached, polymerizing microtubules. Mol. Biol. Cell 2002, 13:4308-4316.
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 4308-4316
-
-
Tirnauer, J.S.1
-
20
-
-
0023794840
-
Selective stabilization of microtubules oriented toward the direction of cell migration
-
Gundersen G.G., Bulinski J.C. Selective stabilization of microtubules oriented toward the direction of cell migration. Proc. Natl. Acad. Sci. U.S.A. 1988, 85:5946-5950.
-
(1988)
Proc. Natl. Acad. Sci. U.S.A.
, vol.85
, pp. 5946-5950
-
-
Gundersen, G.G.1
Bulinski, J.C.2
-
21
-
-
0034907213
-
MDia mediates Rho-regulated formation and orientation of stable microtubules
-
Palazzo A.F., et al. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat. Cell Biol. 2001, 3:723-729.
-
(2001)
Nat. Cell Biol.
, vol.3
, pp. 723-729
-
-
Palazzo, A.F.1
-
22
-
-
0034474692
-
Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap
-
Infante A.S., et al. Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J. Cell Sci. 2000, 113:3907-3919.
-
(2000)
J. Cell Sci.
, vol.113
, pp. 3907-3919
-
-
Infante, A.S.1
-
23
-
-
0027058857
-
Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau
-
Drechsel D.N., et al. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell 1992, 3:1141-1154.
-
(1992)
Mol. Biol. Cell
, vol.3
, pp. 1141-1154
-
-
Drechsel, D.N.1
-
24
-
-
0027048607
-
Brain microtubule-associated proteins modulate microtubule dynamic instability in vitro. Real-time observations using video microscopy
-
Pryer N.K., et al. Brain microtubule-associated proteins modulate microtubule dynamic instability in vitro. Real-time observations using video microscopy. J. Cell Sci. 1992, 103:965-976.
-
(1992)
J. Cell Sci.
, vol.103
, pp. 965-976
-
-
Pryer, N.K.1
-
25
-
-
0028062756
-
XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover
-
Vasquez R.J., et al. XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J. Cell Biol. 1994, 127:985-993.
-
(1994)
J. Cell Biol.
, vol.127
, pp. 985-993
-
-
Vasquez, R.J.1
-
26
-
-
43049146221
-
Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex
-
Ciferri C., et al. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 2008, 133:427-439.
-
(2008)
Cell
, vol.133
, pp. 427-439
-
-
Ciferri, C.1
-
27
-
-
61349161067
-
The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion
-
Powers A.F., et al. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 2009, 136:865-875.
-
(2009)
Cell
, vol.136
, pp. 865-875
-
-
Powers, A.F.1
-
28
-
-
65549149069
-
Protein architecture of the human kinetochore microtubule attachment site
-
Wan X., et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 2009, 137:672-684.
-
(2009)
Cell
, vol.137
, pp. 672-684
-
-
Wan, X.1
-
29
-
-
33751232957
-
The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
-
Cheeseman I.M., et al. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 2006, 127:983-997.
-
(2006)
Cell
, vol.127
, pp. 983-997
-
-
Cheeseman, I.M.1
-
30
-
-
33751227843
-
Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
-
DeLuca J.G., et al. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 2006, 127:969-982.
-
(2006)
Cell
, vol.127
, pp. 969-982
-
-
DeLuca, J.G.1
-
31
-
-
79951833036
-
Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis
-
Deluca K.F., et al. Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis. J. Cell Sci. 2011, 124:622-634.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 622-634
-
-
Deluca, K.F.1
-
32
-
-
0026680668
-
Chromosome mal-orientation and reorientation during mitosis
-
Ault J.G., Rieder C.L. Chromosome mal-orientation and reorientation during mitosis. Cell Motil. Cytoskeleton 1992, 22:155-159.
-
(1992)
Cell Motil. Cytoskeleton
, vol.22
, pp. 155-159
-
-
Ault, J.G.1
Rieder, C.L.2
-
33
-
-
79952107079
-
Sensing centromere tension: Aurora B and the regulation of kinetochore function
-
Lampson M.A., Cheeseman I.M. Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol. 2011, 21:133-140.
-
(2011)
Trends Cell Biol.
, vol.21
, pp. 133-140
-
-
Lampson, M.A.1
Cheeseman, I.M.2
-
34
-
-
10544228528
-
Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae
-
Kohno H., et al. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 1996, 15:6060-6068.
-
(1996)
EMBO J.
, vol.15
, pp. 6060-6068
-
-
Kohno, H.1
-
35
-
-
0033535351
-
Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p
-
Lee L., et al. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol. 1999, 144:947-961.
-
(1999)
J. Cell Biol.
, vol.144
, pp. 947-961
-
-
Lee, L.1
-
36
-
-
0034657914
-
Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae
-
Adames N.R., Cooper J.A. Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J. Cell Biol. 2000, 149:863-874.
-
(2000)
J. Cell Biol.
, vol.149
, pp. 863-874
-
-
Adames, N.R.1
Cooper, J.A.2
-
37
-
-
0034202612
-
It's a kar9ochore to capture microtubules
-
Bloom K. It's a kar9ochore to capture microtubules. Nat. Cell Biol. 2000, 2:E96-E98.
-
(2000)
Nat. Cell Biol.
, vol.2
-
-
Bloom, K.1
-
38
-
-
0035124550
-
Search, capture and signal: games microtubules and centrosomes play
-
Schuyler S.C., Pellman D. Search, capture and signal: games microtubules and centrosomes play. J. Cell Sci. 2001, 114:247-255.
-
(2001)
J. Cell Sci.
, vol.114
, pp. 247-255
-
-
Schuyler, S.C.1
Pellman, D.2
-
39
-
-
75749107871
-
Structural and mechanistic insights into microtubule end-binding proteins
-
Slep K.C. Structural and mechanistic insights into microtubule end-binding proteins. Curr. Opin. Cell Biol. 2010, 22:88-95.
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, pp. 88-95
-
-
Slep, K.C.1
-
40
-
-
37249075604
-
Reconstitution of a microtubule plus-end tracking system in vitro
-
Bieling P., et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 2007, 450:1100-1105.
-
(2007)
Nature
, vol.450
, pp. 1100-1105
-
-
Bieling, P.1
-
41
-
-
40849088165
-
Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends
-
Dragestein K.A., et al. Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends. J. Cell Biol. 2008, 180:729-737.
-
(2008)
J. Cell Biol.
, vol.180
, pp. 729-737
-
-
Dragestein, K.A.1
-
42
-
-
34548304294
-
BubR1 and APC/EB1 cooperate to maintain metaphase chromosome alignment
-
Zhang J., et al. BubR1 and APC/EB1 cooperate to maintain metaphase chromosome alignment. J. Cell Biol. 2007, 178:773-784.
-
(2007)
J. Cell Biol.
, vol.178
, pp. 773-784
-
-
Zhang, J.1
-
43
-
-
33745542004
-
Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells
-
Draviam V.M., et al. Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells. EMBO J. 2006, 25:2814-2827.
-
(2006)
EMBO J.
, vol.25
, pp. 2814-2827
-
-
Draviam, V.M.1
-
44
-
-
0346849717
-
Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC
-
Green R.A., Kaplan K.B. Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. J. Cell Biol. 2003, 163:949-961.
-
(2003)
J. Cell Biol.
, vol.163
, pp. 949-961
-
-
Green, R.A.1
Kaplan, K.B.2
-
45
-
-
26244463198
-
APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment
-
Green R.A., et al. APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol. Biol. Cell 2005, 16:4609-4622.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 4609-4622
-
-
Green, R.A.1
-
46
-
-
77952377598
-
The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex
-
Lampert F., et al. The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex. J. Cell Biol. 2010, 189:641-649.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 641-649
-
-
Lampert, F.1
-
47
-
-
77957854052
-
In vitro reconstitution of the functional interplay between MCAK and EB3 at microtubule plus ends
-
Montenegro Gouveia S., et al. In vitro reconstitution of the functional interplay between MCAK and EB3 at microtubule plus ends. Curr. Biol. 2010, 20:1717-1722.
-
(2010)
Curr. Biol.
, vol.20
, pp. 1717-1722
-
-
Montenegro Gouveia, S.1
-
48
-
-
33744944760
-
Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis
-
Civelekoglu-Scholey G., et al. Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. Biophys. J. 2006, 90:3966-3982.
-
(2006)
Biophys. J.
, vol.90
, pp. 3966-3982
-
-
Civelekoglu-Scholey, G.1
-
49
-
-
33750813894
-
Modeling of chromosome motility during mitosis
-
Gardner M.K., Odde D.J. Modeling of chromosome motility during mitosis. Curr. Opin. Cell Biol. 2006, 18:639-647.
-
(2006)
Curr. Opin. Cell Biol.
, vol.18
, pp. 639-647
-
-
Gardner, M.K.1
Odde, D.J.2
-
50
-
-
0025291581
-
Modulation of microtubule stability by kinetochores in vitro
-
Hyman A.A., Mitchison T.J. Modulation of microtubule stability by kinetochores in vitro. J. Cell Biol. 1990, 110:1607-1616.
-
(1990)
J. Cell Biol.
, vol.110
, pp. 1607-1616
-
-
Hyman, A.A.1
Mitchison, T.J.2
-
51
-
-
0028786819
-
Kinetochore microtubule dynamics and the metaphase-anaphase transition
-
Zhai Y., et al. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J. Cell Biol. 1995, 131:721-734.
-
(1995)
J. Cell Biol.
, vol.131
, pp. 721-734
-
-
Zhai, Y.1
-
52
-
-
77950521043
-
Molecular control of kinetochore-microtubule dynamics and chromosome oscillations
-
Amaro A.C., et al. Molecular control of kinetochore-microtubule dynamics and chromosome oscillations. Nat. Cell Biol. 2010, 12:319-329.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 319-329
-
-
Amaro, A.C.1
-
53
-
-
38849201167
-
The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment
-
Stumpff J., et al. The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev. Cell 2008, 14:252-262.
-
(2008)
Dev. Cell
, vol.14
, pp. 252-262
-
-
Stumpff, J.1
-
54
-
-
0029960516
-
Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome
-
Khodjakov A., Rieder C.L. Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome. J. Cell Biol. 1996, 135:315-327.
-
(1996)
J. Cell Biol.
, vol.135
, pp. 315-327
-
-
Khodjakov, A.1
Rieder, C.L.2
|