메뉴 건너뛰기




Volumn 21, Issue 11, 2011, Pages 625-629

FORMIN a link between kinetochores and microtubule ends

Author keywords

[No Author keywords available]

Indexed keywords

ACTIN; METHENAMINE; TUBULIN;

EID: 80755135384     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2011.08.005     Document Type: Review
Times cited : (26)

References (54)
  • 1
    • 0037459109 scopus 로고    scopus 로고
    • Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling
    • Cleveland D.W., et al. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 2003, 112:407-421.
    • (2003) Cell , vol.112 , pp. 407-421
    • Cleveland, D.W.1
  • 2
    • 37549071893 scopus 로고    scopus 로고
    • Molecular architecture of the kinetochore-microtubule interface
    • Cheeseman I.M., Desai A. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 2008, 9:33-46.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 33-46
    • Cheeseman, I.M.1    Desai, A.2
  • 3
    • 75749117934 scopus 로고    scopus 로고
    • Mechanisms of force generation by end-on kinetochore-microtubule attachments
    • Joglekar A.P., et al. Mechanisms of force generation by end-on kinetochore-microtubule attachments. Curr. Opin. Cell Biol. 2010, 22:57-67.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 57-67
    • Joglekar, A.P.1
  • 4
    • 69849107380 scopus 로고    scopus 로고
    • The life and miracles of kinetochores
    • Santaguida S., Musacchio A. The life and miracles of kinetochores. EMBO J. 2009, 28:2511-2531.
    • (2009) EMBO J. , vol.28 , pp. 2511-2531
    • Santaguida, S.1    Musacchio, A.2
  • 5
    • 69949117643 scopus 로고    scopus 로고
    • Ska3 is required for spindle checkpoint silencing and the maintenance of chromosome cohesion in mitosis
    • Daum J.R., et al. Ska3 is required for spindle checkpoint silencing and the maintenance of chromosome cohesion in mitosis. Curr. Biol. 2009, 19:1467-1472.
    • (2009) Curr. Biol. , vol.19 , pp. 1467-1472
    • Daum, J.R.1
  • 6
    • 66249086063 scopus 로고    scopus 로고
    • Stable kinetochore-microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3
    • Gaitanos T.N., et al. Stable kinetochore-microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3. EMBO J. 2009, 28:1442-1452.
    • (2009) EMBO J. , vol.28 , pp. 1442-1452
    • Gaitanos, T.N.1
  • 7
    • 69649106682 scopus 로고    scopus 로고
    • RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment
    • Raaijmakers J.A., et al. RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment. J. Cell Sci. 2009, 122:2436-2445.
    • (2009) J. Cell Sci. , vol.122 , pp. 2436-2445
    • Raaijmakers, J.A.1
  • 8
    • 61749084467 scopus 로고    scopus 로고
    • The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility
    • Welburn J.P., et al. The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev. Cell 2009, 16:374-385.
    • (2009) Dev. Cell , vol.16 , pp. 374-385
    • Welburn, J.P.1
  • 9
    • 79952523494 scopus 로고    scopus 로고
    • Aurora B regulates formin mDia3 in achieving metaphase chromosome alignment
    • Cheng L., et al. Aurora B regulates formin mDia3 in achieving metaphase chromosome alignment. Dev. Cell 2011, 20:342-352.
    • (2011) Dev. Cell , vol.20 , pp. 342-352
    • Cheng, L.1
  • 10
    • 1942455757 scopus 로고    scopus 로고
    • Cdc42 and mDia3 regulate microtubule attachment to kinetochores
    • Yasuda S., et al. Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature 2004, 428:767-771.
    • (2004) Nature , vol.428 , pp. 767-771
    • Yasuda, S.1
  • 11
    • 0027324156 scopus 로고
    • Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism
    • Skibbens R.V., et al. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J. Cell Biol. 1993, 122:859-875.
    • (1993) J. Cell Biol. , vol.122 , pp. 859-875
    • Skibbens, R.V.1
  • 12
    • 11144281883 scopus 로고    scopus 로고
    • Phylogenetic analysis of the formin homology 2 domain
    • Higgs H.N., Peterson K.J. Phylogenetic analysis of the formin homology 2 domain. Mol. Biol. Cell 2005, 16:1-13.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 1-13
    • Higgs, H.N.1    Peterson, K.J.2
  • 13
    • 20444381052 scopus 로고    scopus 로고
    • A comparative sequence analysis reveals a common GBD/FH3-FH1-FH2-DAD architecture in formins from Dictyostelium, fungi and metazoa
    • Rivero F., et al. A comparative sequence analysis reveals a common GBD/FH3-FH1-FH2-DAD architecture in formins from Dictyostelium, fungi and metazoa. BMC Genomics 2005, 6:28.
    • (2005) BMC Genomics , vol.6 , pp. 28
    • Rivero, F.1
  • 15
    • 72949110575 scopus 로고    scopus 로고
    • Unleashing formins to remodel the actin and microtubule cytoskeletons
    • Chesarone M.A., et al. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat. Rev. Mol. Cell Biol. 2010, 11:62-74.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 62-74
    • Chesarone, M.A.1
  • 16
    • 34248154652 scopus 로고    scopus 로고
    • Mechanism and function of formins in the control of actin assembly
    • Goode B.L., Eck M.J. Mechanism and function of formins in the control of actin assembly. Annu. Rev. Biochem. 2007, 76:593-627.
    • (2007) Annu. Rev. Biochem. , vol.76 , pp. 593-627
    • Goode, B.L.1    Eck, M.J.2
  • 17
    • 43149114446 scopus 로고    scopus 로고
    • The formin mDia2 stabilizes microtubules independently of its actin nucleation activity
    • Bartolini F., et al. The formin mDia2 stabilizes microtubules independently of its actin nucleation activity. J. Cell Biol. 2008, 181:523-536.
    • (2008) J. Cell Biol. , vol.181 , pp. 523-536
    • Bartolini, F.1
  • 18
    • 4444360489 scopus 로고    scopus 로고
    • EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration
    • Wen Y., et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat. Cell Biol. 2004, 6:820-830.
    • (2004) Nat. Cell Biol. , vol.6 , pp. 820-830
    • Wen, Y.1
  • 19
    • 1842854468 scopus 로고    scopus 로고
    • EB1 targets to kinetochores with attached, polymerizing microtubules
    • Tirnauer J.S., et al. EB1 targets to kinetochores with attached, polymerizing microtubules. Mol. Biol. Cell 2002, 13:4308-4316.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 4308-4316
    • Tirnauer, J.S.1
  • 20
    • 0023794840 scopus 로고
    • Selective stabilization of microtubules oriented toward the direction of cell migration
    • Gundersen G.G., Bulinski J.C. Selective stabilization of microtubules oriented toward the direction of cell migration. Proc. Natl. Acad. Sci. U.S.A. 1988, 85:5946-5950.
    • (1988) Proc. Natl. Acad. Sci. U.S.A. , vol.85 , pp. 5946-5950
    • Gundersen, G.G.1    Bulinski, J.C.2
  • 21
    • 0034907213 scopus 로고    scopus 로고
    • MDia mediates Rho-regulated formation and orientation of stable microtubules
    • Palazzo A.F., et al. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat. Cell Biol. 2001, 3:723-729.
    • (2001) Nat. Cell Biol. , vol.3 , pp. 723-729
    • Palazzo, A.F.1
  • 22
    • 0034474692 scopus 로고    scopus 로고
    • Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap
    • Infante A.S., et al. Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J. Cell Sci. 2000, 113:3907-3919.
    • (2000) J. Cell Sci. , vol.113 , pp. 3907-3919
    • Infante, A.S.1
  • 23
    • 0027058857 scopus 로고
    • Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau
    • Drechsel D.N., et al. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell 1992, 3:1141-1154.
    • (1992) Mol. Biol. Cell , vol.3 , pp. 1141-1154
    • Drechsel, D.N.1
  • 24
    • 0027048607 scopus 로고
    • Brain microtubule-associated proteins modulate microtubule dynamic instability in vitro. Real-time observations using video microscopy
    • Pryer N.K., et al. Brain microtubule-associated proteins modulate microtubule dynamic instability in vitro. Real-time observations using video microscopy. J. Cell Sci. 1992, 103:965-976.
    • (1992) J. Cell Sci. , vol.103 , pp. 965-976
    • Pryer, N.K.1
  • 25
    • 0028062756 scopus 로고
    • XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover
    • Vasquez R.J., et al. XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J. Cell Biol. 1994, 127:985-993.
    • (1994) J. Cell Biol. , vol.127 , pp. 985-993
    • Vasquez, R.J.1
  • 26
    • 43049146221 scopus 로고    scopus 로고
    • Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex
    • Ciferri C., et al. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 2008, 133:427-439.
    • (2008) Cell , vol.133 , pp. 427-439
    • Ciferri, C.1
  • 27
    • 61349161067 scopus 로고    scopus 로고
    • The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion
    • Powers A.F., et al. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 2009, 136:865-875.
    • (2009) Cell , vol.136 , pp. 865-875
    • Powers, A.F.1
  • 28
    • 65549149069 scopus 로고    scopus 로고
    • Protein architecture of the human kinetochore microtubule attachment site
    • Wan X., et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 2009, 137:672-684.
    • (2009) Cell , vol.137 , pp. 672-684
    • Wan, X.1
  • 29
    • 33751232957 scopus 로고    scopus 로고
    • The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
    • Cheeseman I.M., et al. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 2006, 127:983-997.
    • (2006) Cell , vol.127 , pp. 983-997
    • Cheeseman, I.M.1
  • 30
    • 33751227843 scopus 로고    scopus 로고
    • Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
    • DeLuca J.G., et al. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 2006, 127:969-982.
    • (2006) Cell , vol.127 , pp. 969-982
    • DeLuca, J.G.1
  • 31
    • 79951833036 scopus 로고    scopus 로고
    • Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis
    • Deluca K.F., et al. Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis. J. Cell Sci. 2011, 124:622-634.
    • (2011) J. Cell Sci. , vol.124 , pp. 622-634
    • Deluca, K.F.1
  • 32
    • 0026680668 scopus 로고
    • Chromosome mal-orientation and reorientation during mitosis
    • Ault J.G., Rieder C.L. Chromosome mal-orientation and reorientation during mitosis. Cell Motil. Cytoskeleton 1992, 22:155-159.
    • (1992) Cell Motil. Cytoskeleton , vol.22 , pp. 155-159
    • Ault, J.G.1    Rieder, C.L.2
  • 33
    • 79952107079 scopus 로고    scopus 로고
    • Sensing centromere tension: Aurora B and the regulation of kinetochore function
    • Lampson M.A., Cheeseman I.M. Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol. 2011, 21:133-140.
    • (2011) Trends Cell Biol. , vol.21 , pp. 133-140
    • Lampson, M.A.1    Cheeseman, I.M.2
  • 34
    • 10544228528 scopus 로고    scopus 로고
    • Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae
    • Kohno H., et al. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 1996, 15:6060-6068.
    • (1996) EMBO J. , vol.15 , pp. 6060-6068
    • Kohno, H.1
  • 35
    • 0033535351 scopus 로고    scopus 로고
    • Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p
    • Lee L., et al. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol. 1999, 144:947-961.
    • (1999) J. Cell Biol. , vol.144 , pp. 947-961
    • Lee, L.1
  • 36
    • 0034657914 scopus 로고    scopus 로고
    • Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae
    • Adames N.R., Cooper J.A. Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J. Cell Biol. 2000, 149:863-874.
    • (2000) J. Cell Biol. , vol.149 , pp. 863-874
    • Adames, N.R.1    Cooper, J.A.2
  • 37
    • 0034202612 scopus 로고    scopus 로고
    • It's a kar9ochore to capture microtubules
    • Bloom K. It's a kar9ochore to capture microtubules. Nat. Cell Biol. 2000, 2:E96-E98.
    • (2000) Nat. Cell Biol. , vol.2
    • Bloom, K.1
  • 38
    • 0035124550 scopus 로고    scopus 로고
    • Search, capture and signal: games microtubules and centrosomes play
    • Schuyler S.C., Pellman D. Search, capture and signal: games microtubules and centrosomes play. J. Cell Sci. 2001, 114:247-255.
    • (2001) J. Cell Sci. , vol.114 , pp. 247-255
    • Schuyler, S.C.1    Pellman, D.2
  • 39
    • 75749107871 scopus 로고    scopus 로고
    • Structural and mechanistic insights into microtubule end-binding proteins
    • Slep K.C. Structural and mechanistic insights into microtubule end-binding proteins. Curr. Opin. Cell Biol. 2010, 22:88-95.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 88-95
    • Slep, K.C.1
  • 40
    • 37249075604 scopus 로고    scopus 로고
    • Reconstitution of a microtubule plus-end tracking system in vitro
    • Bieling P., et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 2007, 450:1100-1105.
    • (2007) Nature , vol.450 , pp. 1100-1105
    • Bieling, P.1
  • 41
    • 40849088165 scopus 로고    scopus 로고
    • Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends
    • Dragestein K.A., et al. Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends. J. Cell Biol. 2008, 180:729-737.
    • (2008) J. Cell Biol. , vol.180 , pp. 729-737
    • Dragestein, K.A.1
  • 42
    • 34548304294 scopus 로고    scopus 로고
    • BubR1 and APC/EB1 cooperate to maintain metaphase chromosome alignment
    • Zhang J., et al. BubR1 and APC/EB1 cooperate to maintain metaphase chromosome alignment. J. Cell Biol. 2007, 178:773-784.
    • (2007) J. Cell Biol. , vol.178 , pp. 773-784
    • Zhang, J.1
  • 43
    • 33745542004 scopus 로고    scopus 로고
    • Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells
    • Draviam V.M., et al. Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells. EMBO J. 2006, 25:2814-2827.
    • (2006) EMBO J. , vol.25 , pp. 2814-2827
    • Draviam, V.M.1
  • 44
    • 0346849717 scopus 로고    scopus 로고
    • Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC
    • Green R.A., Kaplan K.B. Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. J. Cell Biol. 2003, 163:949-961.
    • (2003) J. Cell Biol. , vol.163 , pp. 949-961
    • Green, R.A.1    Kaplan, K.B.2
  • 45
    • 26244463198 scopus 로고    scopus 로고
    • APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment
    • Green R.A., et al. APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol. Biol. Cell 2005, 16:4609-4622.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 4609-4622
    • Green, R.A.1
  • 46
    • 77952377598 scopus 로고    scopus 로고
    • The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex
    • Lampert F., et al. The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex. J. Cell Biol. 2010, 189:641-649.
    • (2010) J. Cell Biol. , vol.189 , pp. 641-649
    • Lampert, F.1
  • 47
    • 77957854052 scopus 로고    scopus 로고
    • In vitro reconstitution of the functional interplay between MCAK and EB3 at microtubule plus ends
    • Montenegro Gouveia S., et al. In vitro reconstitution of the functional interplay between MCAK and EB3 at microtubule plus ends. Curr. Biol. 2010, 20:1717-1722.
    • (2010) Curr. Biol. , vol.20 , pp. 1717-1722
    • Montenegro Gouveia, S.1
  • 48
    • 33744944760 scopus 로고    scopus 로고
    • Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis
    • Civelekoglu-Scholey G., et al. Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. Biophys. J. 2006, 90:3966-3982.
    • (2006) Biophys. J. , vol.90 , pp. 3966-3982
    • Civelekoglu-Scholey, G.1
  • 49
    • 33750813894 scopus 로고    scopus 로고
    • Modeling of chromosome motility during mitosis
    • Gardner M.K., Odde D.J. Modeling of chromosome motility during mitosis. Curr. Opin. Cell Biol. 2006, 18:639-647.
    • (2006) Curr. Opin. Cell Biol. , vol.18 , pp. 639-647
    • Gardner, M.K.1    Odde, D.J.2
  • 50
    • 0025291581 scopus 로고
    • Modulation of microtubule stability by kinetochores in vitro
    • Hyman A.A., Mitchison T.J. Modulation of microtubule stability by kinetochores in vitro. J. Cell Biol. 1990, 110:1607-1616.
    • (1990) J. Cell Biol. , vol.110 , pp. 1607-1616
    • Hyman, A.A.1    Mitchison, T.J.2
  • 51
    • 0028786819 scopus 로고
    • Kinetochore microtubule dynamics and the metaphase-anaphase transition
    • Zhai Y., et al. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J. Cell Biol. 1995, 131:721-734.
    • (1995) J. Cell Biol. , vol.131 , pp. 721-734
    • Zhai, Y.1
  • 52
    • 77950521043 scopus 로고    scopus 로고
    • Molecular control of kinetochore-microtubule dynamics and chromosome oscillations
    • Amaro A.C., et al. Molecular control of kinetochore-microtubule dynamics and chromosome oscillations. Nat. Cell Biol. 2010, 12:319-329.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 319-329
    • Amaro, A.C.1
  • 53
    • 38849201167 scopus 로고    scopus 로고
    • The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment
    • Stumpff J., et al. The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev. Cell 2008, 14:252-262.
    • (2008) Dev. Cell , vol.14 , pp. 252-262
    • Stumpff, J.1
  • 54
    • 0029960516 scopus 로고    scopus 로고
    • Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome
    • Khodjakov A., Rieder C.L. Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome. J. Cell Biol. 1996, 135:315-327.
    • (1996) J. Cell Biol. , vol.135 , pp. 315-327
    • Khodjakov, A.1    Rieder, C.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.