메뉴 건너뛰기




Volumn 26, Issue 5, 2011, Pages 696-705

Consensus features of CP-MLR and GA in modeling HIV-1 RT inhibitory activity of 4-benzyl/benzoylpyridin-2-one analogues

Author keywords

ANN; Benzyl benzoylpyridinones; CPMLR; GA; HIV 1 RT inhibitors; QSAR

Indexed keywords

PYRIDONE DERIVATIVE; RNA DIRECTED DNA POLYMERASE;

EID: 80052854752     PISSN: 14756366     EISSN: 14756374     Source Type: Journal    
DOI: 10.3109/14756366.2010.548328     Document Type: Article
Times cited : (4)

References (38)
  • 1
    • 15444370583 scopus 로고    scopus 로고
    • New non-nucleoside reverse transcriptase inhibitors (NNRTIs) in development for the treatment of HIV infections
    • DOI 10.1016/j.coph.2004.07.005, PII S1471489204001304
    • Pauwels R. New non-nucleoside reverse transcriptase inhibitors (NNRTIs) in development for the treatment of HIV infections. Curr Opin Pharmacol 2004;4:437-446. (Pubitemid 40533003)
    • (2004) Current Opinion in Pharmacology , vol.4 , Issue.5 , pp. 437-446
    • Pauwels, R.1
  • 2
    • 36749073433 scopus 로고    scopus 로고
    • Te design of drugs for HIV and HCV
    • Clercq ED. Te design of drugs for HIV and HCV. Nat Rev Drug Discov 2007;6:1001-1018.
    • (2007) Nat Rev Drug Discov , vol.6 , pp. 1001-1018
    • Clercq, E.D.1
  • 4
    • 12144265244 scopus 로고    scopus 로고
    • Non-nucleoside reverse transcriptase inhibitors (NNRTIs): Past, present and future
    • Clercq ED. Non-nucleoside reverse transcriptase inhibitors (NNRTIs): past, present and future. Chem Biodivers 2004;1:44-64.
    • (2004) Chem Biodivers , vol.1 , pp. 44-64
    • Clercq, E.D.1
  • 6
    • 0028924567 scopus 로고
    • Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors
    • Esnouf R, Ren J, Ross C, Jones Y, Stammers D, Stuart D. Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors. Nat Struct Biol 1995;2:303-308.
    • (1995) Nat Struct Biol , vol.2 , pp. 303-308
    • Esnouf, R.1    Ren, J.2    Ross, C.3    Jones, Y.4    Stammers, D.5    Stuart, D.6
  • 7
    • 12144278681 scopus 로고    scopus 로고
    • HIV-reverse transcriptase inhibition: Inclusion of ligand-induced fit by cross-docking studies
    • DOI 10.1021/jm0493921
    • Ragno R, Frasca S, Manetti F, Brizzi A, Massa S. HIV-reverse transcriptase inhibition: inclusion of ligand-induced ft by cross-docking studies. J Med Chem 2005;48:200-212. (Pubitemid 40109511)
    • (2005) Journal of Medicinal Chemistry , vol.48 , Issue.1 , pp. 200-212
    • Ragno, R.1    Frasca, S.2    Manetti, F.3    Brizzi, A.4    Massa, S.5
  • 11
    • 46749128681 scopus 로고    scopus 로고
    • Pyridin-2(1H)-ones: A promising class of HIV-1 non-nucleoside reverse transcriptase inhibitors
    • Franco JLM, Mayorga KM, Gordiano CJ, Castillo R. Pyridin-2(1H)-ones: a promising class of HIV-1 non-nucleoside reverse transcriptase inhibitors. Chem Med Chem 2007;2:1141-1147.
    • (2007) Chem Med Chem , vol.2 , pp. 1141-1147
    • Jlm, F.1    Mayorga, K.M.2    Gordiano, C.J.3    Castillo, R.4
  • 12
    • 8544239371 scopus 로고    scopus 로고
    • CP-MLR/PLS directed structure-activity modeling of the HIV-1 RT inhibitory activity of 2,3-diaryl-1,3-thiazolidin-4-ones
    • DOI 10.1002/qsar.200330854
    • Prabhakar YS, Solomon VR, Rawal RK, Gupta MK, Katti SB. CP-MLR/PLS Directed Structure-Activity Modeling of the HIV-1 RT Inhibitory Activity of 2,3-Diaryl-1,3-thiazolidin-4-ones. QSAR Comb Sci 2004;23:234-244. (Pubitemid 39490415)
    • (2004) QSAR and Combinatorial Science , vol.23 , Issue.4 , pp. 234-244
    • Prabhakar, Y.S.1    Solomon, V.R.2    Rawal, R.K.3    Gupta, M.K.4    Katti, S.B.5
  • 14
    • 34250676593 scopus 로고    scopus 로고
    • Molecular surface features in modeling the HIV-1 RT inhibitory activity of 2-(2,6-disubstituted phenyl)-3-(substituted pyrimidin-2-yl)-thiazolidin-4- ones
    • DOI 10.1002/qsar.200630040
    • Rawal RK, Prabhakar YS, Katti SB. Molecular surface features in modeling the HIV-1 RT inhibitory activity of 2-(2,6-disubstituted phenyl)-3-(substituted pyrimidin-2-yl)-thiazolidin-4-ones. QSAR Comb Sci 2007;26:398-406. (Pubitemid 46932866)
    • (2007) QSAR and Combinatorial Science , vol.26 , Issue.3 , pp. 398-406
    • Rawal, R.K.1    Prabhakar, Y.S.2    Katti, S.B.3
  • 15
    • 0036700501 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship study of 2-arylsulfonyl-6-substituted benzonitriles as non-nucleoside reverse. Transcriptase inhibitors of HIV-1
    • DOI 10.1080/1475636021000010932
    • Sharma BK, Kumar R, Singh P. Quantitative structure-activity relationship study of 2-arylsulfonyl-6-substituted benzonitriles as non-nucleoside reverse transcriptase inhibitors of HIV-1. J Enzyme Inhib Med Chem 2002;17:219-225. (Pubitemid 35175258)
    • (2002) Journal of Enzyme Inhibition and Medicinal Chemistry , vol.17 , Issue.4 , pp. 219-225
    • Sharma, B.K.1    Kumar, R.2    Singh, P.3
  • 17
    • 80052829619 scopus 로고    scopus 로고
    • By Todeschini R, Consonni V, Mauri A, Pavan M. Milano, Italy. Error! Hyperlink reference not valid.
    • DRAGON software version 5.0-2005. By Todeschini R, Consonni V, Mauri A, Pavan M. Milano, Italy. Error! Hyperlink reference not valid.
    • DRAGON Software Version 5.0-2005
  • 18
    • 77951979146 scopus 로고    scopus 로고
    • Hybrid-genetic algorithm based descriptor optimization and QSAR models for predicting the biological activity of Tipranavir analogs for HIV protease inhibition
    • Reddy AS, Kumar S, Garg R. Hybrid-genetic algorithm based descriptor optimization and QSAR models for predicting the biological activity of Tipranavir analogs for HIV protease inhibition. J Mol Graph Model 2010;28:852-862.
    • (2010) J Mol Graph Model , vol.28 , pp. 852-862
    • Reddy, A.S.1    Kumar, S.2    Garg, R.3
  • 19
    • 23844539732 scopus 로고    scopus 로고
    • Interpreting computational neural network quantitative structure-activity relationship models: A detailed interpretation of the weights and biases
    • DOI 10.1021/ci050110v
    • Guha R, Stanton DT, Jurs PC. Interpreting computational neural network quantitative structure-activity relationship models: a detailed interpretation of the weights and biases. J Chem Inf Model 2005;45:1109-1121. (Pubitemid 41156711)
    • (2005) Journal of Chemical Information and Modeling , vol.45 , Issue.4 , pp. 1109-1121
    • Guha, R.1    Stanton, D.T.2    Jurs, P.C.3
  • 20
    • 0042970262 scopus 로고    scopus 로고
    • A combinatorial approach to the variable selection in multiple linear regression: Analysis of Selwood et al. data set - A case study
    • Prabhakar YS. A combinatorial approach to the variable selection in multiple linear regression analysis of Selwood et al. data set-a case study. QSAR Comb Sci 2003;22:583-595. (Pubitemid 37010625)
    • (2003) QSAR and Combinatorial Science , vol.22 , Issue.6 , pp. 583-595
    • Prabhakar, Y.S.1
  • 21
    • 33244477896 scopus 로고    scopus 로고
    • A high dimensional QSAR study on the aldose reductase inhibitory activity of some flavones: Topological descriptors in modeling the activity
    • DOI 10.1021/ci050060u
    • Prabhakar YS, Gupta MK, Roy N, Venkateswarlu Y. A high dimensional QSAR study on the aldose reductase inhibitory activity of some favones: topological descriptors in modeling the activity. J Chem Inf Model 2006;46:86-92. (Pubitemid 43282102)
    • (2006) Journal of Chemical Information and Modeling , vol.46 , Issue.1 , pp. 86-92
    • Prabhakar, Y.S.1    Gupta, M.K.2    Roy, N.3    Venkateswarlu, Y.4
  • 23
    • 9944232029 scopus 로고    scopus 로고
    • Total ranking models by the genetic algorithm variable subset selection (GA-VSS) approach for environmental priority settings
    • Pavan M, Mauri A, Todeschini R. Total ranking models by the genetic algorithm variable subset selection (GA-VSS) approach for environmental priority settings. Anal Bioanal Chem 2004;380:430-444.
    • (2004) Anal Bioanal Chem , vol.380 , pp. 430-444
    • Pavan, M.1    Mauri, A.2    Todeschini, R.3
  • 24
    • 80052837184 scopus 로고    scopus 로고
    • Multi-model environment as a rational approach for drug design: An experience with CP-MLR
    • Deshpande S, Gupta MK, Prabhakar YS. Multi-model environment as a rational approach for drug design: an experience with CP-MLR. IUP J Chem 2010; 3:1-33.
    • (2010) IUP J Chem , vol.3 , pp. 1-33
    • Deshpande, S.1    Gupta, M.K.2    Prabhakar, Y.S.3
  • 25
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • Rumelhart DE, Hinton GE, Williams RJ. Learning representations by backpropagating errors. Nature, 1986;323:533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 29
    • 84951601886 scopus 로고
    • Cross validatory estimation of the number of components in factor and principal components analysis
    • Wold S. Cross validatory estimation of the number of components in factor and principal components analysis. Technometrics 1978;20:397-406.
    • (1978) Technometrics , vol.20 , pp. 397-406
    • Wold, S.1
  • 30
    • 0024154259 scopus 로고
    • Eillis GP, West WB. ggEds Elsevier Science Publishers, B.V. Amsterdam (Chapter 6)
    • Stahle L, Wold S, in: Eillis GP, West WB. ggEds., Progress in Medicinal Chemistry, vol. 25, Elsevier Science Publishers, B.V. Amsterdam, 1988. P 291-338 (Chapter 6).
    • (1988) Progress in Medicinal Chemistry , vol.25 , pp. 291-338
    • Stahle, L.1    Wold, S.2
  • 31
    • 0031434910 scopus 로고    scopus 로고
    • Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Method and validations
    • DOI 10.1021/jm970487v
    • So SS, Karplus M. Tree-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Method and validations. J Med Chem 1997;40:4347-4359. (Pubitemid 28042314)
    • (1997) Journal of Medicinal Chemistry , vol.40 , Issue.26 , pp. 4347-4359
    • So, S.-S.1    Karplus, M.2
  • 33
    • 39149085365 scopus 로고    scopus 로고
    • Artifcial neural networks in chemometrics: History, examples and perspectives
    • Marini F, Bucci R, Magrì AL, Magrì AD. Artifcial neural networks in chemometrics: History, examples and perspectives. Microchem J 2008;88:178-185.
    • (2008) Microchem J , vol.88 , pp. 178-185
    • Marini, F.1    Bucci, R.2    Magrì, A.L.3    Magrì, A.D.4
  • 34
    • 0000169232 scopus 로고
    • An algorithm for leastsquares estimation of nonlinear parameters
    • Marquardt DW. An algorithm for leastsquares estimation of nonlinear parameters. J Soc Ind Appl Math 1963;11:431-441.
    • (1963) J Soc Ind Appl Math , vol.11 , pp. 431-441
    • Marquardt, D.W.1
  • 35
    • 0028543366 scopus 로고
    • Training feedforward networks with the marquardt algorithm
    • Hagan MT, Menhaj MB. Training Feedforward Networks with the Marquardt Algorithm. IEEE T Neural Net 1994;5:989-993.
    • (1994) IEEE T Neural Net , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 36
    • 84856578279 scopus 로고    scopus 로고
    • MATLAB, Version 7.6: http://www.mathworks.com/products/matlab/.
    • MATLAB Version 7.6
  • 37
    • 42949174603 scopus 로고    scopus 로고
    • Combining docking, molecular dynamics and the linear interaction energy method to predict binding modes and affinities for non-nucleoside inhibitors to HIV-1 reverse transcriptase
    • DOI 10.1021/jm7012198
    • Carlsson J, Boukharta L, Aqvist J. Combining docking, molecular dynamics and the linear interaction energy method to predict binding modes and afnities for non-nucleoside inhibitors to HIV-1 reverse transcriptase. J Med Chem 2008;51:2648-2656. (Pubitemid 351620786)
    • (2008) Journal of Medicinal Chemistry , vol.51 , Issue.9 , pp. 2648-2656
    • Carlsson, J.1    Boukharta, L.2    Aqvist, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.