메뉴 건너뛰기




Volumn 22, Issue 6, 2003, Pages 583-595

A combinatorial approach to the variable selection in multiple linear regression: Analysis of Selwood et al. data set - A case study

Author keywords

Antifilarial activity; Antimycin A1 analogues; Combinatorial approach; Regression analysis; Variable selection

Indexed keywords

ANTIFILARIAL ACTIVITY; ANTIMYCIN; ANTIMYCIN A1 ANALOG; COMBINATORIAL APPROACH; DATA SET; DESCRIPTORS; DIVERGENTS; MULTIPLE LINEAR REGRESSION ANALYSES (MLRA); MULTIPLE LINEAR REGRESSIONS; VARIABLES SELECTIONS;

EID: 0042970262     PISSN: 1611020X     EISSN: None     Source Type: Journal    
DOI: 10.1002/qsar.200330814     Document Type: Article
Times cited : (58)

References (20)
  • 1
    • 0024154259 scopus 로고
    • Multivariate data analysis and experimental design in biomedical research
    • Ellis, G. P., and West, G. B., (Eds). Elsevier Science Publishers
    • L. Stahle, and S. Wold, Multivariate data analysis and experimental design in biomedical research In Ellis, G. P., and West, G. B., (Eds). "Progress in Medicinal Chemistry, Vol. 25". Elsevier Science Publishers, 1988, pp. 292-338.
    • (1988) Progress in Medicinal Chemistry , vol.25 , pp. 292-338
    • Stahle, L.1    Wold, S.2
  • 4
    • 0027416552 scopus 로고
    • The use of neural networks for variable selection in QSAR
    • J. H. Wikel, and E. R. Dow, The use of neural networks for variable selection in QSAR, Bioorg. Med. Chem. Lett., 1993, 3, 645-651.
    • (1993) Bioorg. Med. Chem. Lett. , vol.3 , pp. 645-651
    • Wikel, J.H.1    Dow, E.R.2
  • 5
    • 0027945214 scopus 로고
    • Analysis of linear and non-linear QSAR data using neural networks
    • D. T. Manallack, D. D. Ellis, and D. J., Livingstone, Analysis of Linear and Non-Linear QSAR Data using Neural Networks. J. Med. Chem., 1994, 37, 3758-3767.
    • (1994) J. Med. Chem. , vol.37 , pp. 3758-3767
    • Manallack, D.T.1    Ellis, D.D.2    Livingstone, D.J.3
  • 7
    • 0028344873 scopus 로고
    • On identifying likely determinants of biological activity in high dimensional QSAR problems
    • J. W. McFarland, and D. J. Gans, On identifying likely determinants of biological activity in high dimensional QSAR problems, Quant. Struct.-Act. Relat., 1994, 13, 11-17.
    • (1994) Quant. Struct.-Act. Relat. , vol.13 , pp. 11-17
    • McFarland, J.W.1    Gans, D.J.2
  • 8
    • 0028467707 scopus 로고
    • Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships
    • D. Rogers, and A. J. Hopfinger, Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships, J. Chem. Inf. Comput. Sci., 1994, 34, 854-866.
    • (1994) J. Chem. Inf. Comput. Sci. , vol.34 , pp. 854-866
    • Rogers, D.1    Hopfinger, A.J.2
  • 9
    • 0028046665 scopus 로고
    • Variable selection in QSAR studies. 1. An evolutionary algorithm
    • H. Kubinyi, Variable selection in QSAR studies. 1. An evolutionary algorithm, Quant. Struct.-Act. Relat., 1994, 13, 285-294.
    • (1994) Quant. Struct.-Act. Relat. , vol.13 , pp. 285-294
    • Kubinyi, H.1
  • 10
    • 0028597381 scopus 로고
    • Variable selection in QSAR studies. II. A high efficient combination of systematic search and evolution
    • H. Kubinyi, Variable selection in QSAR studies. II. A high efficient combination of systematic search and evolution, Quant. Struct.-Act. Relat., 1994, 13, 393-401.
    • (1994) Quant. Struct.-Act. Relat. , vol.13 , pp. 393-401
    • Kubinyi, H.1
  • 11
    • 0029970338 scopus 로고    scopus 로고
    • Evolutionary optimization in quantitative structure-activity relationship: An application of genetic neural networks
    • S.-S. So, and M. Karplus, Evolutionary optimization in quantitative structure-activity relationship: An application of genetic neural networks, J. Med. Chem., 1996, 39, 1521-1530.
    • (1996) J. Med. Chem. , vol.39 , pp. 1521-1530
    • So, S.-S.1    Karplus, M.2
  • 12
    • 0000481568 scopus 로고    scopus 로고
    • Development and validation of a novel variable selection technique with application to multidimensional quantitative structure-activity relationship studies
    • C. L. Waller, and M. P. Bradley, Development and validation of a novel variable selection technique with application to multidimensional quantitative structure-activity relationship studies, J. Chem. Inf. Comput. Sci., 1999, 39, 345-355.
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , pp. 345-355
    • Waller, C.L.1    Bradley, M.P.2
  • 13
    • 0036628557 scopus 로고    scopus 로고
    • Genetic algorithm guided selection: Variable selection and subset selection
    • S. J. Cho, and M. A. Hermsmeier, Genetic algorithm guided selection: Variable selection and subset selection, J. Chem. Inf. Comput. Sci., 2002, 42, 927-936.
    • (2002) J. Chem. Inf. Comput. Sci. , vol.42 , pp. 927-936
    • Cho, S.J.1    Hermsmeier, M.A.2
  • 14
    • 0037038314 scopus 로고    scopus 로고
    • Multiobjective optimization in quantitative structure-activity relationships: Deriving accurate and interpretable QSARs
    • O. Nicolotti, V. J. Gillet, P. J. Fleming, and D. V. S. Green, Multiobjective optimization in quantitative structure-activity relationships: Deriving accurate and interpretable QSARs, J. Med. Chem., 2002, 45, 5069-5080.
    • (2002) J. Med. Chem. , vol.45 , pp. 5069-5080
    • Nicolotti, O.1    Gillet, V.J.2    Fleming, P.J.3    Green, D.V.S.4
  • 15
    • 0004110959 scopus 로고
    • Blackwell Scientific Publications, Oxford
    • nd Edition", Blackwell Scientific Publications, Oxford, 1990, pp. 296-357.
    • (1990) nd Edition , pp. 296-357
    • Armitage, P.1    Berry, G.2
  • 16
    • 0025021103 scopus 로고
    • Structure-activity relationships of antifilarial antimycin analogues: A multivariate pattern recognition study
    • D. L. Selwood, D. J. Livingstone, J. C. W. Comley, A. B. O'Dowd, A. T. Hudson, P. Jackson, K. S. Jandu, V. S. Rose, and J. N. Stables, Structure-activity relationships of antifilarial antimycin analogues: A multivariate pattern recognition study, J. Med. Chem., 1990, 33, 136-142 (data set downloaded from: http://www.disat.unimib.it/chm/Datasets.htm#Selwood).
    • (1990) J. Med. Chem. , vol.33 , pp. 136-142
    • Selwood, D.L.1    Livingstone, D.J.2    Comley, J.C.W.3    O'Dowd, A.B.4    Hudson, A.T.5    Jackson, P.6    Jandu, K.S.7    Rose, V.S.8    Stables, J.N.9
  • 17
    • 0018983267 scopus 로고
    • Inflation of R2 in best subset regressions
    • A. C. Rencher, and F. C. Pun, Inflation of R2 in best subset regressions, Technometrics, 1980, 22, 49-53.
    • (1980) Technometrics , vol.22 , pp. 49-53
    • Rencher, A.C.1    Pun, F.C.2
  • 18
    • 0003716976 scopus 로고    scopus 로고
    • SPSS Inc., 444 North Michigan Avenue, Chicago, IL 60611
    • SYSTAT, Version 7.0: SPSS Inc., 444 North Michigan Avenue, Chicago, IL 60611.
    • SYSTAT, Version 7.0
  • 19
    • 0015884712 scopus 로고
    • On model building in structure-activity relationships. A reexamination of adrenergic blocking activity of β-halo-β-arylalkylamines
    • S. H. Unger, and C. Hansch, On model building in structure-activity relationships. A reexamination of adrenergic blocking activity of β-halo-β-arylalkylamines, J. Med. Chem., 1973, 16, 745-749.
    • (1973) J. Med. Chem. , vol.16 , pp. 745-749
    • Unger, S.H.1    Hansch, C.2
  • 20
    • 0001639411 scopus 로고
    • Efficient computing of regression diagnostics
    • P. F. Velleman, and R. E. Welsch, Efficient computing of regression diagnostics. The American Statistician, 1981, 35, 234-242.
    • (1981) The American Statistician , vol.35 , pp. 234-242
    • Velleman, P.F.1    Welsch, R.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.