메뉴 건너뛰기




Volumn , Issue , 2011, Pages

FACT: A framework for adaptive contention-aware thread migrations

Author keywords

multicore; operating systems; scheduling; supervised learning

Indexed keywords

ARCHITECTURAL FEATURES; COMMERCIAL OPERATING SYSTEMS; COMPUTING UNITS; CONTENTION-AWARE; DATA CENTER SERVICES; DATA CENTERS; MEMORY CONTROLLER; MEMORY HIERARCHY; MEMORY RESOURCES; MULTI CORE; MULTI-CORE SYSTEMS; PERFORMANCE BOTTLENECKS; PERFORMANCE DEGRADATION; PERFORMANCE FACTORS; PERFORMANCE MONITORING; PREDICTION ACCURACY; PREDICTIVE MODELS; RULE BASED; SINGLE CHIPS; STATE-OF-THE-ART ALGORITHMS; THREAD MIGRATION; THREAD SCHEDULING;

EID: 80052546075     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2016604.2016647     Document Type: Conference Paper
Times cited : (26)

References (41)
  • 5
    • 75749116827 scopus 로고    scopus 로고
    • Managing Contention for Shared Resources on Multicore Processors
    • February
    • A. Fedorova, S. Blagodurov, and S. zhuravlev. Managing Contention for Shared Resources on Multicore Processors. Communications of the ACM, vol 53, no 2, February 2010. pp. 49-57.
    • (2010) Communications of the ACM , vol.53 , Issue.2 , pp. 49-57
    • Fedorova, A.1    Blagodurov, S.2    Zhuravlev, S.3
  • 6
    • 47249103334 scopus 로고    scopus 로고
    • Using OS Observations to Improve Performance in Multicore Systems
    • R. Knauerhase, B. Hohlt, T. Li and S. Hahn. Using OS Observations to Improve Performance in Multicore Systems, in IEEE Micro, 283, 54-66, 2008.
    • (2008) IEEE Micro , vol.283 , pp. 54-66
    • Knauerhase, R.1    Hohlt, B.2    Li, T.3    Hahn, S.4
  • 7
    • 80052522759 scopus 로고    scopus 로고
    • Operating system support for multi-core processors
    • Ontario, Canada
    • R. Craig and P. lerous, Operating system support for multi-core processors, Review 2005 - Technical Trends, Ontario, Canada.
    • Review 2005 - Technical Trends
    • Craig, R.1    Lerous, P.2
  • 21
    • 37649012283 scopus 로고    scopus 로고
    • A Reinforcement Learning Framework for Online Data Migration in Hierarchical Storage Systems
    • January
    • D. Vengerov, "A Reinforcement Learning Framework for Online Data Migration in Hierarchical Storage Systems. Journal of Supercomputing, Volume 43, Number 1, pp. 1-19, January, 2008.
    • (2008) Journal of Supercomputing , vol.43 , Issue.1 , pp. 1-19
    • Vengerov, D.1
  • 27
    • 1542413503 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining, Inference, and Prediction
    • T. Hastie and R. Tibshirani and J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, 2003, pp. 41-75, 193-222, 266-277 and 411-433.
    • (2003) Springer Series in Statistics
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.H.3
  • 29
    • 80052523311 scopus 로고    scopus 로고
    • libcpc(3LIB) library http://docs.sun.com/app/docs/doc/816-5173/libcpc- 3lib?a=view
    • Libcpc(3LIB) Library
  • 30
    • 80052537452 scopus 로고    scopus 로고
    • libpctx(3LIB) library http://docs.sun.com/app/docs/doc/819-2242/libpctx- 3lib?a=view
    • Libpctx(3LIB) Library
  • 32
    • 34248397223 scopus 로고    scopus 로고
    • Estimators of Relative Importance in Linear Regression Based on Variance Decomposition
    • U. Gromping. Estimators of Relative Importance in Linear Regression Based on Variance Decomposition. The American Statistician, 2007, vol. 61, pages 139-147.
    • (2007) The American Statistician , vol.61 , pp. 139-147
    • Gromping, U.1
  • 33
    • 80052535489 scopus 로고    scopus 로고
    • R lm() method. http://rss.acs.unt.edu/Rdoc/library/stats/html/lm.html
    • R Lm() Method
  • 34
    • 80052540324 scopus 로고    scopus 로고
    • All subsets regression, http://hosho.ees.hokudai.ac.jp/~kubo/Rdoc/ library/leaps/html/leaps.html
    • All Subsets Regression
  • 39
    • 80052531512 scopus 로고    scopus 로고
    • stepAIC() http: //stat.ethz.ch/R-manual/R-patched/library/MASS/html/ stepAIC.html
    • StepAIC()
  • 40
    • 80052533103 scopus 로고    scopus 로고
    • R Tree-based Models. http://www.statmethods.net/advstats/cart.html
    • R Tree-based Models


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.