메뉴 건너뛰기




Volumn 41, Issue 8, 2011, Pages 687-699

Remote protein homology detection and fold recognition using two-layer support vector machine classifiers

Author keywords

Bio inspired kernel.; Fold recognition; Remote protein homology detection; Support Vector Machines; Two layer classifiers

Indexed keywords

BIO-INSPIRED; FOLD RECOGNITION; REMOTE PROTEIN HOMOLOGY DETECTION; SUPPORT VECTOR; TWO LAYERS;

EID: 79960639029     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2011.06.004     Document Type: Article
Times cited : (23)

References (62)
  • 1
    • 17644407349 scopus 로고    scopus 로고
    • A glimpse at the organization of the protein universe
    • Vendruscolo M., Dobson C.M. A glimpse at the organization of the protein universe. PNAS 2005, 102(16):5641-5642.
    • (2005) PNAS , vol.102 , Issue.16 , pp. 5641-5642
    • Vendruscolo, M.1    Dobson, C.M.2
  • 2
    • 27744558162 scopus 로고    scopus 로고
    • CDNA microarray analysis of autoimmune hepatitis, primary biliary cirrhosis and consecutive disease manifestation
    • Honda M., Kawai H., Shirota Y., Yamashita T., Takamura T., Kaneko S. cDNA microarray analysis of autoimmune hepatitis, primary biliary cirrhosis and consecutive disease manifestation. Journal of Autoimmunity 2005, 25(2):133-140.
    • (2005) Journal of Autoimmunity , vol.25 , Issue.2 , pp. 133-140
    • Honda, M.1    Kawai, H.2    Shirota, Y.3    Yamashita, T.4    Takamura, T.5    Kaneko, S.6
  • 3
    • 60549100596 scopus 로고    scopus 로고
    • HIV-1 coreceptor usage prediction without multiple alignments: an application of string kernels
    • Boisvert S., Marchand M., Laviolette F., Corbeil J. HIV-1 coreceptor usage prediction without multiple alignments: an application of string kernels. Retrovirology 2008, 5(11):1-14.
    • (2008) Retrovirology , vol.5 , Issue.11 , pp. 1-14
    • Boisvert, S.1    Marchand, M.2    Laviolette, F.3    Corbeil, J.4
  • 4
    • 32144458563 scopus 로고    scopus 로고
    • Application of latent semantic analysis to protein remote homology detection
    • Dong Q.W., Wang X.L., Lin L. Application of latent semantic analysis to protein remote homology detection. Bioinformatics 2006, 22(3):285-290.
    • (2006) Bioinformatics , vol.22 , Issue.3 , pp. 285-290
    • Dong, Q.W.1    Wang, X.L.2    Lin, L.3
  • 5
    • 0028181441 scopus 로고
    • Hidden Markov models in computational biology: applications to protein modeling
    • Krogh A., Brown M., Mian I., Sjolander K., Haussler D. Hidden Markov models in computational biology: applications to protein modeling. Journal of Molecular Biology 1994, 235(5):1501-1531.
    • (1994) Journal of Molecular Biology , vol.235 , Issue.5 , pp. 1501-1531
    • Krogh, A.1    Brown, M.2    Mian, I.3    Sjolander, K.4    Haussler, D.5
  • 6
    • 33845467978 scopus 로고    scopus 로고
    • A discriminative method for remote homology detection based on n-peptide compositions with reduced amino acid alphabets
    • Oĝul H., Mumcuoĝlu E.U. A discriminative method for remote homology detection based on n-peptide compositions with reduced amino acid alphabets. Biosystems 2007, 87(1):75-81.
    • (2007) Biosystems , vol.87 , Issue.1 , pp. 75-81
    • Oĝul, H.1    Mumcuoĝlu, E.U.2
  • 7
    • 0036376041 scopus 로고    scopus 로고
    • Combining pairwise sequence similarity and support vector machines for remote protein homology detection
    • Liao L., Noble W.S. Combining pairwise sequence similarity and support vector machines for remote protein homology detection. Journal of Computational Biology 2002, 10(6):225-232.
    • (2002) Journal of Computational Biology , vol.10 , Issue.6 , pp. 225-232
    • Liao, L.1    Noble, W.S.2
  • 8
    • 0742287001 scopus 로고    scopus 로고
    • Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships
    • Liao L., Noble W.S. Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships. Journal of Computational Biology 2003, 10(6):857-868.
    • (2003) Journal of Computational Biology , vol.10 , Issue.6 , pp. 857-868
    • Liao, L.1    Noble, W.S.2
  • 9
    • 4444298729 scopus 로고    scopus 로고
    • Profile-profile methods provide improved fold-recognition: a study of different profile-profile alignment methods
    • Ohlson T., Wallner B., Elofsson A. Profile-profile methods provide improved fold-recognition: a study of different profile-profile alignment methods. Proteins 2004, 57(1):187-197.
    • (2004) Proteins , vol.57 , Issue.1 , pp. 187-197
    • Ohlson, T.1    Wallner, B.2    Elofsson, A.3
  • 10
    • 20744433230 scopus 로고    scopus 로고
    • Fold recognition by combining profile-profile alignment and support vector machine
    • Han S., Lee B.C., Yu S.T., Jeong C.S., Lee S., Kim D. Fold recognition by combining profile-profile alignment and support vector machine. Bioinformatics 2005, 21(11):2667-2673.
    • (2005) Bioinformatics , vol.21 , Issue.11 , pp. 2667-2673
    • Han, S.1    Lee, B.C.2    Yu, S.T.3    Jeong, C.S.4    Lee, S.5    Kim, D.6
  • 11
    • 2542631929 scopus 로고    scopus 로고
    • Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition
    • Zhou H., Zhou Y. Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition. Proteins: Structure, Function, and Bioinformatics 2004, 55(4):1005-1013.
    • (2004) Proteins: Structure, Function, and Bioinformatics , vol.55 , Issue.4 , pp. 1005-1013
    • Zhou, H.1    Zhou, Y.2
  • 12
    • 47249098645 scopus 로고    scopus 로고
    • Application of nonnegative matrix factorization to improve profile-profile alignment features for fold recognition
    • Jung I., Lee J., Lee S.Y., Kim D. Application of nonnegative matrix factorization to improve profile-profile alignment features for fold recognition. BMC Bioinformatics 2008, 9(298):1-11.
    • (2008) BMC Bioinformatics , vol.9 , Issue.298 , pp. 1-11
    • Jung, I.1    Lee, J.2    Lee, S.Y.3    Kim, D.4
  • 13
    • 11344292852 scopus 로고    scopus 로고
    • Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments
    • Zhou H., Zhou Y. Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins: Structure, Function, and Bioinformatics 2005, 58(2):321-328.
    • (2005) Proteins: Structure, Function, and Bioinformatics , vol.58 , Issue.2 , pp. 321-328
    • Zhou, H.1    Zhou, Y.2
  • 15
    • 33646785677 scopus 로고    scopus 로고
    • Fold recognition and accurate sequence-structure alignment of sequences directing beta-sheet proteins
    • McDonnell A.V., Menke M., Palmer N., King J., Cowen L., Berger B. Fold recognition and accurate sequence-structure alignment of sequences directing beta-sheet proteins. Proteins 2006, 63(4):976-985.
    • (2006) Proteins , vol.63 , Issue.4 , pp. 976-985
    • McDonnell, A.V.1    Menke, M.2    Palmer, N.3    King, J.4    Cowen, L.5    Berger, B.6
  • 16
    • 0032612775 scopus 로고    scopus 로고
    • Fold recognition using sequence and secondary structure information
    • Koretke K.K., Russell R.B., Copley R.R., Lupas A.N. Fold recognition using sequence and secondary structure information. Proteins 1999, (Suppl. 3):141-148.
    • (1999) Proteins , Issue.SUPPL. 3 , pp. 141-148
    • Koretke, K.K.1    Russell, R.B.2    Copley, R.R.3    Lupas, A.N.4
  • 18
    • 33750948399 scopus 로고    scopus 로고
    • Building multiclass classifiers for remote homology detection and fold recognition
    • Rangwala H., Karypis G. Building multiclass classifiers for remote homology detection and fold recognition. BMC Bioinformatics 2006, 7(455):455-471.
    • (2006) BMC Bioinformatics , vol.7 , Issue.455 , pp. 455-471
    • Rangwala, H.1    Karypis, G.2
  • 19
    • 58149345703 scopus 로고    scopus 로고
    • A discriminative method for protein remote homology detection and fold recognition combining top-n-grams and latent semantic analysis
    • Liu B., Wang X., Lin L., Dong Q., Wang X. A discriminative method for protein remote homology detection and fold recognition combining top-n-grams and latent semantic analysis. BMC Bioinformatics 2008, 9(510):1-16.
    • (2008) BMC Bioinformatics , vol.9 , Issue.510 , pp. 1-16
    • Liu, B.1    Wang, X.2    Lin, L.3    Dong, Q.4    Wang, X.5
  • 20
    • 0036300562 scopus 로고    scopus 로고
    • A Bayesian network model for protein fold and remote homologue recognition
    • Raval A., Ghahramani Z., Wild D.L. A Bayesian network model for protein fold and remote homologue recognition. Bioinformatics 2002, 18(6):788-801.
    • (2002) Bioinformatics , vol.18 , Issue.6 , pp. 788-801
    • Raval, A.1    Ghahramani, Z.2    Wild, D.L.3
  • 21
    • 22544444234 scopus 로고    scopus 로고
    • Protein homology structure and fold prediction using tree-augmented naÏve Bayesian classifier
    • Chinnasamy A., Sung W.K., Mittal A. Protein homology structure and fold prediction using tree-augmented naÏve Bayesian classifier. Journal of Bioinformatics and Computational Biology 2005, 3(4):803-819.
    • (2005) Journal of Bioinformatics and Computational Biology , vol.3 , Issue.4 , pp. 803-819
    • Chinnasamy, A.1    Sung, W.K.2    Mittal, A.3
  • 22
    • 28444492367 scopus 로고    scopus 로고
    • A pattern-based SVM for remote homology detection, in: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18-21 August
    • Q.W. Dong, L. Lin, X.L. Wang, M.H. Li, A pattern-based SVM for remote homology detection, in: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18-21 August 2005, pp. 3363-3368.
    • (2005) , pp. 3363-3368
    • Dong, Q.W.1    Lin, L.2    Wang, X.L.3    Li, M.H.4
  • 23
    • 40749093745 scopus 로고    scopus 로고
    • SVM-HUSTLE-an iterative semi-supervised machine learning approach for pairwise protein remote homology detection
    • Shah A.R., Oehmen C.S., Webb-Robertson B.J. SVM-HUSTLE-an iterative semi-supervised machine learning approach for pairwise protein remote homology detection. Bioinformatics 2008, 24(6):783-790.
    • (2008) Bioinformatics , vol.24 , Issue.6 , pp. 783-790
    • Shah, A.R.1    Oehmen, C.S.2    Webb-Robertson, B.J.3
  • 24
    • 36949013631 scopus 로고    scopus 로고
    • Support vector machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs
    • Shamim M.T.A., Anwaruddin M., Nagarajaram H.A. Support vector machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs. Bioinformatics 2007, 23(24):3320-3327.
    • (2007) Bioinformatics , vol.23 , Issue.24 , pp. 3320-3327
    • Shamim, M.T.A.1    Anwaruddin, M.2    Nagarajaram, H.A.3
  • 25
    • 34447648188 scopus 로고    scopus 로고
    • SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition
    • Melvin I., Ie E., Kuang R., Weston J., Noble W.S., Leslie C. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition. BMC Bioinformatics 2007, 8(Suppl. 4):S2.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 4
    • Melvin, I.1    Ie, E.2    Kuang, R.3    Weston, J.4    Noble, W.S.5    Leslie, C.6
  • 26
    • 0034048878 scopus 로고    scopus 로고
    • A discriminative framework for detecting remote protein homologies
    • Jaakkola T., Diekhans M., Haussler D. A discriminative framework for detecting remote protein homologies. Journal of Computational Biology 2000, 7(1):95-114.
    • (2000) Journal of Computational Biology , vol.7 , Issue.1 , pp. 95-114
    • Jaakkola, T.1    Diekhans, M.2    Haussler, D.3
  • 27
    • 0036358995 scopus 로고    scopus 로고
    • The spectrum kernel: a string kernel for SVM protein classification, in: Proceedings of the Seventh Pacific Symposium on Biocomputing, Hawaii, USA, 3-7 January
    • C. Leslie, E. Eskin, W.S. Noble, The spectrum kernel: a string kernel for SVM protein classification, in: Proceedings of the Seventh Pacific Symposium on Biocomputing, Hawaii, USA, 3-7 January 2002, pp. 564-575.
    • (2002) , pp. 564-575
    • Leslie, C.1    Eskin, E.2    Noble, W.S.3
  • 28
    • 1542714925 scopus 로고    scopus 로고
    • Mismatch string kernels for discriminative protein classification
    • Leslie C.S., Eskin E., Cohen A., Weston J., Noble W.S. Mismatch string kernels for discriminative protein classification. Bioinformatics 2004, 20(4):467-476.
    • (2004) Bioinformatics , vol.20 , Issue.4 , pp. 467-476
    • Leslie, C.S.1    Eskin, E.2    Cohen, A.3    Weston, J.4    Noble, W.S.5
  • 29
    • 33748682730 scopus 로고    scopus 로고
    • Remote homology detection based on oligomer distances
    • Lingner T., Meinicke P. Remote homology detection based on oligomer distances. Bioinformatics 2006, 22(18):2224-2231.
    • (2006) Bioinformatics , vol.22 , Issue.18 , pp. 2224-2231
    • Lingner, T.1    Meinicke, P.2
  • 30
    • 84885731987 scopus 로고    scopus 로고
    • A discriminative method for protein remote homology detection based on N-nary profiles, in: Proceedings of the Second Bioinformatics Research and Development, Vienna, Austria, 7-9 July
    • B. Liu, L. Lin, X. Wang, Q. Dong, X. Wang, A discriminative method for protein remote homology detection based on N-nary profiles, in: Proceedings of the Second Bioinformatics Research and Development, Vienna, Austria, 7-9 July 2008, pp. 74-86.
    • (2008) , pp. 74-86
    • Liu, B.1    Lin, L.2    Wang, X.3    Dong, Q.4    Wang, X.5
  • 31
    • 14944354760 scopus 로고    scopus 로고
    • Multi-class protein fold classification using a new ensemble machine learning approach
    • Tan A.C., David G., Deville Y. Multi-class protein fold classification using a new ensemble machine learning approach. Genome Informatics 2003, 14(1):206-217.
    • (2003) Genome Informatics , vol.14 , Issue.1 , pp. 206-217
    • Tan, A.C.1    David, G.2    Deville, Y.3
  • 32
    • 28444435024 scopus 로고    scopus 로고
    • Support vector machines with profile-based kernels for remote protein homology detection
    • Busuttil S., Abela J., Pace G.J. Support vector machines with profile-based kernels for remote protein homology detection. Genome Informatics 2004, 15(2):191-200.
    • (2004) Genome Informatics , vol.15 , Issue.2 , pp. 191-200
    • Busuttil, S.1    Abela, J.2    Pace, G.J.3
  • 33
    • 33749563073 scopus 로고    scopus 로고
    • Training linear SVMs in linear time, in: Proceedings of the 12th ACM Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, 20-23 August
    • T. Joachims, Training linear SVMs in linear time, in: Proceedings of the 12th ACM Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, 20-23 August 2006, pp. 217-226.
    • (2006) , pp. 217-226
    • Joachims, T.1
  • 34
    • 32144458563 scopus 로고    scopus 로고
    • Application of latent semantic analysis to protein remote homology detection
    • Dong Q., Wang X., Lin L. Application of latent semantic analysis to protein remote homology detection. Bioinformatics 2006, 22(3):285-290.
    • (2006) Bioinformatics , vol.22 , Issue.3 , pp. 285-290
    • Dong, Q.1    Wang, X.2    Lin, L.3
  • 35
    • 0023989064 scopus 로고
    • Improved tools for biological sequence comparison
    • Pearson W.R., Lipman D.J. Improved tools for biological sequence comparison. PNAS 1988, 85(8):2444-2448.
    • (1988) PNAS , vol.85 , Issue.8 , pp. 2444-2448
    • Pearson, W.R.1    Lipman, D.J.2
  • 36
    • 33847308138 scopus 로고    scopus 로고
    • Solving large-scale multiclass learning problems via an efficient support vector classifier
    • Zheng S., Tang H., Han Z., Zhang H. Solving large-scale multiclass learning problems via an efficient support vector classifier. Journal of Systems Engineering and Electronics 2006, 17(4):910-915.
    • (2006) Journal of Systems Engineering and Electronics , vol.17 , Issue.4 , pp. 910-915
    • Zheng, S.1    Tang, H.2    Han, Z.3    Zhang, H.4
  • 38
  • 39
    • 79960635853 scopus 로고    scopus 로고
    • A graph-theoretic approach for reducing one-versus-one multi-class classification to ranking, in: Proceedings of Sixth International Workshop on Mining and Learning with Graphs, Helsinki, Finland, 4-5 July
    • W. Waegeman, B.D. Baets, L. Boullart, A graph-theoretic approach for reducing one-versus-one multi-class classification to ranking, in: Proceedings of Sixth International Workshop on Mining and Learning with Graphs, Helsinki, Finland, 4-5 July 2008, pp. 1-3.
    • (2008) , pp. 1-3
    • Waegeman, W.1    Baets, B.D.2    Boullart, L.3
  • 40
    • 31844446804 scopus 로고    scopus 로고
    • A support vector method for multivariate performance measures, in: Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 7-11 August
    • T. Joachims, A support vector method for multivariate performance measures, in: Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 7-11 August 2005, pp. 377-384.
    • (2005) , pp. 377-384
    • Joachims, T.1
  • 45
    • 28444492998 scopus 로고    scopus 로고
    • Profile-based direct kernels for remote homology detection and fold recognition
    • Rangwala H., Karypis G. Profile-based direct kernels for remote homology detection and fold recognition. Bioinformatics 2005, 21(23):4239-4247.
    • (2005) Bioinformatics , vol.21 , Issue.23 , pp. 4239-4247
    • Rangwala, H.1    Karypis, G.2
  • 47
    • 4444273377 scopus 로고    scopus 로고
    • Protein homology detection using string alignment kernels
    • Saigo H., Vert J.-P., Ueda N., Akutsu T. Protein homology detection using string alignment kernels. Bioinformatics 2004, 20(11):1682-1689.
    • (2004) Bioinformatics , vol.20 , Issue.11 , pp. 1682-1689
    • Saigo, H.1    Vert, J.-P.2    Ueda, N.3    Akutsu, T.4
  • 48
    • 0019887799 scopus 로고
    • Identification of common molecular sequences
    • Smith T., Waterman M. Identification of common molecular sequences. Journal of Molecular Biology 1981, 147(1):195-197.
    • (1981) Journal of Molecular Biology , vol.147 , Issue.1 , pp. 195-197
    • Smith, T.1    Waterman, M.2
  • 50
    • 0031743421 scopus 로고    scopus 로고
    • Profile hidden Markov model
    • Eddy S.R. Profile hidden Markov model. Bioinformatics 1998, 14(9):755-763.
    • (1998) Bioinformatics , vol.14 , Issue.9 , pp. 755-763
    • Eddy, S.R.1
  • 51
    • 4444231365 scopus 로고    scopus 로고
    • A survey of kernels for structured data
    • Gartner T. A survey of kernels for structured data. ACM SIGKDD Explorations Newsletter 2003, 5(1):49-58.
    • (2003) ACM SIGKDD Explorations Newsletter , vol.5 , Issue.1 , pp. 49-58
    • Gartner, T.1
  • 52
    • 79960636378 scopus 로고    scopus 로고
    • Convolution Kernels on Discrete Structures, Technical Report, University of California, Santa Cruz
    • D. Haussler, Convolution Kernels on Discrete Structures, Technical Report, University of California, Santa Cruz, 1999.
    • (1999)
    • Haussler, D.1
  • 53
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel-based clustering in feature space
    • Girolami M. Mercer kernel-based clustering in feature space. IEEE Transactions on Neural Networks 2002, 13(3):780-784.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 780-784
    • Girolami, M.1
  • 54
    • 3543047963 scopus 로고    scopus 로고
    • Where did the BLOSUM62 alignment score matrix come from?
    • Eddy S.R. Where did the BLOSUM62 alignment score matrix come from?. Nature Biotechnology 2004, 22(8):1035-1036.
    • (2004) Nature Biotechnology , vol.22 , Issue.8 , pp. 1035-1036
    • Eddy, S.R.1
  • 56
    • 32144458563 scopus 로고    scopus 로고
    • Application of latent semantic analysis to protein remote homology detection
    • Dong Q., Wang X., Lin L. Application of latent semantic analysis to protein remote homology detection. Bioinformatics 2005, 22(3):285-290.
    • (2005) Bioinformatics , vol.22 , Issue.3 , pp. 285-290
    • Dong, Q.1    Wang, X.2    Lin, L.3
  • 58
    • 0038801263 scopus 로고    scopus 로고
    • TFIIA abrogates the effects of inhibition by HMGB1 but not E1A during the early stages of assembly of the transcriptional preinitiation complex
    • Dasgupta A., Scovell W.M. TFIIA abrogates the effects of inhibition by HMGB1 but not E1A during the early stages of assembly of the transcriptional preinitiation complex. Biochimica et Biophysica Acta 2003, 1627(2-3):101-110.
    • (2003) Biochimica et Biophysica Acta , vol.1627 , Issue.2-3 , pp. 101-110
    • Dasgupta, A.1    Scovell, W.M.2
  • 59
    • 0029068230 scopus 로고
    • Elicitins from Phytophthora and basic resistance in tobacco
    • Yu L.M. Elicitins from Phytophthora and basic resistance in tobacco. PNAS 1995, 92(10):4088-4094.
    • (1995) PNAS , vol.92 , Issue.10 , pp. 4088-4094
    • Yu, L.M.1
  • 61
    • 0033546174 scopus 로고    scopus 로고
    • Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-A resolution
    • Liu J.Y., Jiang T., Zhang J.P., Liang D.C. Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-A resolution. Journal Biology Chemistry 1999, 274(24):16945-16952.
    • (1999) Journal Biology Chemistry , vol.274 , Issue.24 , pp. 16945-16952
    • Liu, J.Y.1    Jiang, T.2    Zhang, J.P.3    Liang, D.C.4
  • 62
    • 67349247098 scopus 로고    scopus 로고
    • Characterization of pairwise and multiple sequence alignment errors
    • Landan G., Graur D. Characterization of pairwise and multiple sequence alignment errors. Gene 2009, 441(1-2):141-147.
    • (2009) Gene , vol.441 , Issue.1-2 , pp. 141-147
    • Landan, G.1    Graur, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.