-
1
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
F. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple Kernel Learning, Conic Duality, and the SMO Algorithm. In International Conference on Machine Learning, 2004.
-
(2004)
International Conference on Machine Learning
-
-
Bach, F.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
2
-
-
0037403111
-
Mirror descent and nonlinear projected subgradient methods for convex optimization
-
Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31:167-175, 2003.
-
(2003)
Operations Research Letters
, vol.31
, pp. 167-175
-
-
Beck, A.1
Teboulle, M.2
-
3
-
-
0036342276
-
The ordered subsets mirror descent optimization method with applications to tomography
-
Aharon Ben-Tal, Tamar Margalit, and Arkadi Nemirovski. The Ordered Subsets Mirror Descent Optimization Method with Applications to Tomography. SIAM Journal of Optimization, 12(1):79-108, 2001.
-
(2001)
SIAM Journal of Optimization
, vol.12
, Issue.1
, pp. 79-108
-
-
Ben-Tal, A.1
Margalit, T.2
Nemirovski, A.3
-
4
-
-
17444361978
-
Non-euclidean restricted memory level method for large-scale convex optimization
-
Aharon Ben-Tal and Arkadi Nemirovski. Non-euclidean Restricted Memory Level Method for Large-scale Convex Optimization. Mathematical Programming, 102(3):407-456, 2005.
-
(2005)
Mathematical Programming
, vol.102
, Issue.3
, pp. 407-456
-
-
Ben-Tal, A.1
Nemirovski, A.2
-
5
-
-
0036161011
-
Choosing multiple parameters for SVM
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukerjhee. Choosing multiple parameters for SVM. Machine Learning, 46:131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukerjhee, S.4
-
7
-
-
84932617705
-
Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
-
R. Fergus L. Fei-Fei and P. Perona. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In IEEE. CVPR 2004, Workshop on Generative-Model Based Vision., 2004.
-
(2004)
IEEE. CVPR 2004, Workshop on Generative-model Based Vision
-
-
Fergus, R.1
Fei-Fei, L.2
Perona, P.3
-
8
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M.I. Jordan. Learning the Kernel Matrix with Semidefinite Programming. Journal of Machine Learning Research, 5:27-72, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.I.5
-
14
-
-
57249084590
-
Simple MKL
-
A. Rakotomamonjy, F. Bach, S. Canu, and Y Grandvalet. Simple MKL. Journal of Machine Learning Research, 9:2491-2521, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Grandvalet, Y.4
-
16
-
-
33745776113
-
Large scale multiple kernel learning
-
Soren Sonnenburg, Gunnar Ratsch, Christin Schafer, and Bernhard Scholkopf. Large Scale Multiple Kernel Learning. Journal of Machine Learning Research, 7:1531-1565, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Ratsch, G.2
Schafer, C.3
Scholkopf, B.4
|