-
1
-
-
75649098165
-
Semiconductor nanowires for energy conversion
-
DOI: 10.1021/cr900075v
-
A. I. Hochbaum and P. Yang, Semiconductor nanowires for energy conversion, Chem. Rev., 2010, 110, 527-546, DOI: 10.1021/cr900075v.
-
(2010)
Chem. Rev.
, vol.110
, pp. 527-546
-
-
Hochbaum, A.I.1
Yang, P.2
-
2
-
-
38849174818
-
Complex thermoelectric materials
-
DOI: 10.1038/Nmat2090
-
G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nat. Mater., 2008, 7, 105-114, DOI: 10.1038/Nmat2090.
-
(2008)
Nat. Mater.
, vol.7
, pp. 105-114
-
-
Snyder, G.J.1
Toberer, E.S.2
-
3
-
-
35949006143
-
Thermoelectric figure of merit of a one-dimensional conductor
-
L. D. Hicks and M. S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B: Condens. Matter, 1993, 47, 16631.
-
(1993)
Phys. Rev. B: Condens. Matter
, vol.47
, pp. 16631
-
-
Hicks, L.D.1
Dresselhaus, M.S.2
-
4
-
-
65649094403
-
Atomistic simulations of heat transport in silicon nanowires
-
DOI: 10.1103/ PhysRevLett.102.195901
-
D. Donadio and G. Galli, Atomistic simulations of heat transport in silicon nanowires, Phys. Rev. Lett., 2009, 102, 4, DOI: 10.1103/ PhysRevLett.102.195901.
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 4
-
-
Donadio, D.1
Galli, G.2
-
5
-
-
61649090471
-
Nanoporous Si as an efficient thermoelectric material
-
DOI: 10.1021/nl802045f
-
J. H. Lee, G. A. Galli and J. C. Grossman, Nanoporous Si as an efficient thermoelectric material, Nano Lett., 2008, 8, 3750-3754, DOI: 10.1021/nl802045f.
-
(2008)
Nano Lett.
, vol.8
, pp. 3750-3754
-
-
Lee, J.H.1
Galli, G.A.2
Grossman, J.C.3
-
6
-
-
64149110758
-
Impact of phononsurface roughness scattering on thermal conductivity of thin Si nanowires
-
P. Martin, Z. Aksamija, E. Pop and U. Ravaioli, Impact of phononsurface roughness scattering on thermal conductivity of thin Si nanowires, Phys. Rev. Lett., 2009, 102, 125503.
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 125503
-
-
Martin, P.1
Aksamija, Z.2
Pop, E.3
Ravaioli, U.4
-
7
-
-
0037183949
-
Quantum dot superlattice thermoelectric materials and devices
-
T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge, Quantum dot superlattice thermoelectric materials and devices, Science, 2002, 297, 2229-2232.
-
(2002)
Science
, vol.297
, pp. 2229-2232
-
-
Harman, T.C.1
Taylor, P.J.2
Walsh, M.P.3
la Forge, B.E.4
-
8
-
-
38049148246
-
Silicon nanowires as efficient thermoelectric materials
-
DOI: 10.1038/nature06458
-
A. I. Boukai, et al. Silicon nanowires as efficient thermoelectric materials, Nature, 2008, 451, 168-171, DOI: 10.1038/nature06458.
-
(2008)
Nature
, vol.451
, pp. 168-171
-
-
Boukai, A.I.1
-
9
-
-
46449085036
-
High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys
-
DOI: 10.1126/science.1156446
-
B. Poudel, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science, 2008, 320, 634-638, DOI: 10.1126/science.1156446.
-
(2008)
Science
, vol.320
, pp. 634-638
-
-
Poudel, B.1
-
10
-
-
48249152189
-
Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states
-
DOI: 10.1126/science.1159725
-
J. P. Heremans, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science, 2008, 321, 554-557, DOI: 10.1126/science.1159725.
-
(2008)
Science
, vol.321
, pp. 554-557
-
-
Heremans, J.P.1
-
11
-
-
33645397634
-
Aspects of thinfilm superlattice thermoelectric materials, devices, and applications
-
H. Bottner, G. Chen and R. Venkatasubramanian, Aspects of thinfilm superlattice thermoelectric materials, devices, and applications, MRS Bull., 2006, 31, 211-217.
-
(2006)
MRS Bull.
, vol.31
, pp. 211-217
-
-
Bottner, H.1
Chen, G.2
Venkatasubramanian, R.3
-
12
-
-
0842331448
-
Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit
-
K. F. Hsu, et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit, Science, 2004, 303, 818-821.
-
(2004)
Science
, vol.303
, pp. 818-821
-
-
Hsu, K.F.1
-
13
-
-
38049143961
-
Enhanced thermoelectric performance of rough silicon nanowires
-
DOI: 10.1038/ Nature06381
-
A. I. Hochbaum, et al. Enhanced thermoelectric performance of rough silicon nanowires, Nature, 2008, 451, 163-167, DOI: 10.1038/ Nature06381.
-
(2008)
Nature
, vol.451
, pp. 163-167
-
-
Hochbaum, A.I.1
-
14
-
-
70849124686
-
Formation of Compositionally Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires
-
DOI: 10.1126/science.1178606
-
C.-Y. Wen, et al. Formation of Compositionally Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires, Science, 2009, 326, 1247-1250, DOI: 10.1126/science.1178606.
-
(2009)
Science
, vol.326
, pp. 1247-1250
-
-
Wen, C.-Y.1
-
15
-
-
0001686073
-
3-ZnO films
-
3-ZnO films, Appl. Phys. Lett., 1998, 73, 2585-2587.
-
(1998)
Appl. Phys. Lett.
, vol.73
, pp. 2585-2587
-
-
Yan, Y.1
-
17
-
-
0000720839
-
Extended defect structures in zinc oxide doped with iron and indium
-
T. Horlin, G. Svensson and E. Olsson, Extended defect structures in zinc oxide doped with iron and indium, J. Mater. Chem., 1998, 8, 2465-2473.
-
(1998)
J. Mater. Chem.
, vol.8
, pp. 2465-2473
-
-
Horlin, T.1
Svensson, G.2
Olsson, E.3
-
18
-
-
0000306958
-
15 studied by high-resolution electron microscopy
-
15 studied by high-resolution electron microscopy, J. Solid State Chem., 1999, 142, 174-179.
-
(1999)
J. Solid State Chem.
, vol.142
, pp. 174-179
-
-
Li, C.F.1
Bando, Y.2
Nakamura, M.3
Kimizuka, N.4
-
20
-
-
0242367470
-
Thermal conductivity of Si/SiGe superlattice nanowires
-
D. Li, Y. Wu, R. Fan, P. Yang and A. Majumdar, Thermal conductivity of Si/SiGe superlattice nanowires, Appl. Phys. Lett., 2003, 83, 3186-3188.
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 3186-3188
-
-
Li, D.1
Wu, Y.2
Fan, R.3
Yang, P.4
Majumdar, A.5
-
21
-
-
11444254181
-
Thermoelectric properties of superlattice nanowires
-
DOI: 10.1103/PhysRevB.68.075304
-
Y. Lin and M. Dresselhaus, Thermoelectric properties of superlattice nanowires, Phys. Rev. B: Condens. Matter, 2003, 68, 075304, DOI: 10.1103/PhysRevB.68.075304.
-
(2003)
Phys. Rev. B: Condens. Matter
, vol.68
, pp. 075304
-
-
Lin, Y.1
Dresselhaus, M.2
-
22
-
-
9144240504
-
Synthesis and characterization of ZnO: In nanowires with superlattice structure
-
DOI: 10.1021/Jp0484783
-
J. S. Jie, G. Z. Wang, X. H. Han and J. G. Hou, Synthesis and characterization of ZnO: In nanowires with superlattice structure, J. Phys. Chem. B, 2004, 108, 17027-17031, DOI: 10.1021/Jp0484783.
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 17027-17031
-
-
Jie, J.S.1
Wang, G.Z.2
Han, X.H.3
Hou, J.G.4
-
23
-
-
22344435537
-
5 nanowires
-
DOI: 10.1021/Jp0442246
-
5 nanowires, J. Phys. Chem. B, 2005, 109, 12785-12790, DOI: 10.1021/Jp0442246.
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 12785-12790
-
-
Na, C.W.1
Bae, S.Y.2
Park, J.3
-
24
-
-
73849125571
-
m nanowires with perfect superlattice structure
-
DOI: 10.1021/jp906381h
-
m nanowires with perfect superlattice structure, J. Phys. Chem. C, 2009, 113, 21512-21515, DOI: 10.1021/jp906381h.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 21512-21515
-
-
Li, D.P.1
Wang, G.Z.2
Yang, Q.H.3
Xie, X.4
-
25
-
-
0035827304
-
Room-temperature ultraviolet nanowire nanolasers
-
M. H. Huang, et al. Room-temperature ultraviolet nanowire nanolasers, Science, 2001, 292, 1897-1899.
-
(2001)
Science
, vol.292
, pp. 1897-1899
-
-
Huang, M.H.1
-
26
-
-
46449088816
-
n compounds
-
DOI: 10.1103/Physrevlett.100.255501
-
n compounds, Phys. Rev. Lett., 2008, 100, 255501, DOI: 10.1103/Physrevlett.100.255501.
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 255501
-
-
da Silva, J.L.F.1
Yan, Y.F.2
Wei, S.H.3
-
27
-
-
13944269076
-
Doping and planar defects in the formation of single-crystal ZnO nanorings
-
Y. Ding, X. Y. Kong and Z. L. Wang, Doping and planar defects in the formation of single-crystal ZnO nanorings, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, 70, 235408.
-
(2004)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.70
, pp. 235408
-
-
Ding, Y.1
Kong, X.Y.2
Wang, Z.L.3
-
28
-
-
34547298674
-
3-ZnO systems
-
3-ZnO systems, Appl. Phys. Lett., 2007, 90, 261903-261904.
-
(2007)
Appl. Phys. Lett.
, vol.90
, pp. 261903-261904
-
-
Yan, Y.1
da Silva, J.L.F.2
Wei, S.-H.3
Al-Jassim, M.4
-
29
-
-
0030964289
-
m as revealed by high-resolution electron microscopy
-
m as revealed by high-resolution electron microscopy, J. Electron Microsc., 1997, 46, 119-127.
-
(1997)
J. Electron Microsc.
, vol.46
, pp. 119-127
-
-
Li, C.1
Bando, Y.2
Nakamura, M.3
Kimizuka, N.4
-
30
-
-
0001483370
-
m (m = 1, 4, 5 and 6)
-
DOI: 10.1107/S0108270193008108
-
m (m = 1, 4, 5 and 6), Acta Crystallographica Section C, 1994, 50, 332-336, DOI: 10.1107/S0108270193008108.
-
(1994)
Acta Crystallographica Section C
, vol.50
, pp. 332-336
-
-
Isobe, M.1
Kimizuka, N.2
Nakamura, M.3
Mohri, T.4
-
31
-
-
0342430303
-
The diffusion and precipitation of indium in zinc oxide
-
D. G. Thomas, The diffusion and precipitation of indium in zinc oxide, J. Phys. Chem. Solids, 1959, 9, 31-42.
-
(1959)
J. Phys. Chem. Solids
, vol.9
, pp. 31-42
-
-
Thomas, D.G.1
-
33
-
-
33646891992
-
Diffusion of zinc vacancies and interstitials in zinc oxide
-
P. Erhart and K. Albe, Diffusion of zinc vacancies and interstitials in zinc oxide, Appl. Phys. Lett., 2006, 88, 201913-201918.
-
(2006)
Appl. Phys. Lett.
, vol.88
, pp. 201913-201918
-
-
Erhart, P.1
Albe, K.2
-
34
-
-
62249107901
-
Analysis of indium diffusion profiles based on the Fermi-level effect in single-crystal zinc oxide
-
T. Nakagawa, et al. Analysis of indium diffusion profiles based on the Fermi-level effect in single-crystal zinc oxide, Jpn. J. Appl. Phys., 2008, 47, 7848.
-
(2008)
Jpn. J. Appl. Phys.
, vol.47
, pp. 7848
-
-
Nakagawa, T.1
-
35
-
-
34547850352
-
Diffusion model of gallium in single-crystal ZnO proposed from analysis of concentration-dependent profiles based on the Fermi-level effect
-
T. Nakagawa, et al. Diffusion model of gallium in single-crystal ZnO proposed from analysis of concentration-dependent profiles based on the Fermi-level effect, Jpn. J. Appl. Phys., 2007, 46, 4099.
-
(2007)
Jpn. J. Appl. Phys.
, vol.46
, pp. 4099
-
-
Nakagawa, T.1
-
36
-
-
0343241116
-
Impurity contamination of GaN epitaxial films from the sapphire, SiC and ZnO substrates
-
G. Popovici, et al. Impurity contamination of GaN epitaxial films from the sapphire, SiC and ZnO substrates, Appl. Phys. Lett., 1997, 71, 3385-3387.
-
(1997)
Appl. Phys. Lett.
, vol.71
, pp. 3385-3387
-
-
Popovici, G.1
-
37
-
-
0034103996
-
m (M = Al and In; m = integer)
-
m (M = Al and In; m = integer), Micron, 2000, 31, 543-550.
-
(2000)
Micron
, vol.31
, pp. 543-550
-
-
Li, C.1
Bando, Y.2
Nakamura, M.3
Kimizuka, N.4
-
38
-
-
38549131183
-
Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays
-
G.-D. Yuan, et al. Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays, Adv. Mater., 2008, 20, 168-173.
-
(2008)
Adv. Mater.
, vol.20
, pp. 168-173
-
-
Yuan, G.-D.1
-
39
-
-
0038362743
-
Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor
-
K. Nomura, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor, Science, 2003, 300, 1269-1272.
-
(2003)
Science
, vol.300
, pp. 1269-1272
-
-
Nomura, K.1
-
40
-
-
5444268548
-
5 films
-
DOI: 10.1063/1.1788897
-
5 films, Appl. Phys. Lett., 2004, 85, 1993-1995, DOI: 10.1063/1.1788897.
-
(2004)
Appl. Phys. Lett.
, vol.85
, pp. 1993-1995
-
-
Nomura, K.1
-
41
-
-
0032373348
-
Thermoelectric effects in submicron heterostructure barriers
-
A. Shakouri, E. Lee, D. Smith, V. Narayanamurti and J. Bowers, Thermoelectric effects in submicron heterostructure barriers, Nanoscale Microscale Thermophys. Eng., 1998, 2, 37-47.
-
(1998)
Nanoscale Microscale Thermophys. Eng.
, vol.2
, pp. 37-47
-
-
Shakouri, A.1
Lee, E.2
Smith, D.3
Narayanamurti, V.4
Bowers, J.5
-
42
-
-
0000585618
-
Superlattice applications to thermoelectricity
-
L. W. Whitlow and T. Hirano, Superlattice applications to thermoelectricity, J. Appl. Phys., 1995, 78, 5460-5466.
-
(1995)
J. Appl. Phys.
, vol.78
, pp. 5460-5466
-
-
Whitlow, L.W.1
Hirano, T.2
-
43
-
-
70450187235
-
Large enhancement of the thermoelectric Seebeck coefficient for amorphous oxide semiconductor superlattices with extremely thin conductive layers
-
DOI: 10.1002/ pssr.200802017
-
H. Ohta, R. Huang and Y. Ikuhara, Large enhancement of the thermoelectric Seebeck coefficient for amorphous oxide semiconductor superlattices with extremely thin conductive layers, Phys. Status Solidi RRL, 2008, 2, 105-107, DOI: 10.1002/ pssr.200802017.
-
(2008)
Phys. Status Solidi RRL
, vol.2
, pp. 105-107
-
-
Ohta, H.1
Huang, R.2
Ikuhara, Y.3
-
44
-
-
0041336894
-
Optical properties of confined polaronic excitons in spherical ionic quantum dots
-
DOI: 10.1103/PhysRevB.68.045313
-
R. Senger and K. Bajaj, Optical properties of confined polaronic excitons in spherical ionic quantum dots, Phys. Rev. B: Condens. Matter, 2003, 68, 045313, DOI: 10.1103/PhysRevB.68.045313.
-
(2003)
Phys. Rev. B: Condens. Matter
, vol.68
, pp. 045313
-
-
Senger, R.1
Bajaj, K.2
-
45
-
-
0002321379
-
Thermoelectric properties of Al-doped ZnO as a promising oxide material for hightemperature thermoelectric conversion
-
T. Tsubota, M. Ohtaki, K. Eguchi and H. Arai, Thermoelectric properties of Al-doped ZnO as a promising oxide material for hightemperature thermoelectric conversion, J. Mater. Chem., 1997, 7, 85-90.
-
(1997)
J. Mater. Chem.
, vol.7
, pp. 85-90
-
-
Tsubota, T.1
Ohtaki, M.2
Eguchi, K.3
Arai, H.4
-
46
-
-
1942507893
-
3 single crystal grown by a flux method
-
DOI: 10.1143/jjap.43.1194
-
3 single crystal grown by a flux method, Jpn. J. Appl. Phys., Part 2, 2004, 43, L194-L196, DOI: 10.1143/jjap.43.1194.
-
(2004)
Jpn. J. Appl. Phys., Part 2
, vol.43
-
-
Malochkin, O.1
Se, W.S.2
Koumoto, K.3
-
47
-
-
2942556919
-
Field-effect mobility of amorphous silicon thinfilm transistors under strain
-
H. Gleskova, et al. Field-effect mobility of amorphous silicon thinfilm transistors under strain, J. Non-Cryst. Solids, 2004, 338-340, 732-735.
-
(2004)
J. Non-Cryst. Solids
, vol.338-340
, pp. 732-735
-
-
Gleskova, H.1
-
48
-
-
38849100858
-
Polar semiconductor ZnO under inplane tensile strain
-
DOI: 10.1103/PhysRevB.77.045213
-
Z. Alahmed and H. Fu, Polar semiconductor ZnO under inplane tensile strain, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 77, 045213, DOI: 10.1103/PhysRevB.77.045213.
-
(2008)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.77
, pp. 045213
-
-
Alahmed, Z.1
Fu, H.2
-
49
-
-
4243123974
-
Engineering nanoscale phonon and photon transport for direct energy conversion
-
DOI: 10.1016/ j.spmi.2003.08.001
-
G. Chen, A. Narayanaswamy and C. Dames, Engineering nanoscale phonon and photon transport for direct energy conversion, Superlattices Microstruct., 2004, 35, 161-172, DOI: 10.1016/ j.spmi.2003.08.001.
-
(2004)
Superlattices Microstruct.
, vol.35
, pp. 161-172
-
-
Chen, G.1
Narayanaswamy, A.2
Dames, C.3
-
50
-
-
33646721773
-
Thermal conductivity of bulk ZnO after different thermal treatments
-
U. Ozgur, et al. Thermal conductivity of bulk ZnO after different thermal treatments, J. Electron. Mater., 2006, 35, 550-555.
-
(2006)
J. Electron. Mater.
, vol.35
, pp. 550-555
-
-
Ozgur, U.1
-
52
-
-
33846602674
-
Ultralow thermal conductivity in disordered, layered WSe2 crystals
-
DOI: 10.1126/ science.1136494
-
C. Chiritescu, et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals, Science, 2007, 315, 351-353, DOI: 10.1126/ science.1136494.
-
(2007)
Science
, vol.315
, pp. 351-353
-
-
Chiritescu, C.1
-
53
-
-
77955093375
-
Thermoelectric and magnetothermoelectric properties of In-doped nano-ZnO thin films prepared by RF magnetron sputtering
-
L. Fang, et al. Thermoelectric and magnetothermoelectric properties of In-doped nano-ZnO thin films prepared by RF magnetron sputtering, J. Supercond. Novel Magn., 2010, 23, 889-892.
-
(2010)
J. Supercond. Novel Magn.
, vol.23
, pp. 889-892
-
-
Fang, L.1
-
54
-
-
0242349591
-
Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device
-
L. Shi, et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device, J. Heat Transfer, 2003, 125, 881-888.
-
(2003)
J. Heat Transfer
, vol.125
, pp. 881-888
-
-
Shi, L.1
|