메뉴 건너뛰기




Volumn 12, Issue 2, 2011, Pages 176-186

Protein mass spectra data analysis for clinical biomarker discovery: A global review

Author keywords

Biomarker identification; Clinical proteomics; Pre processing; Statistics; Validation

Indexed keywords

BIOLOGICAL MARKER; PROTEIN;

EID: 79953139278     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbq019     Document Type: Review
Times cited : (23)

References (86)
  • 1
    • 2142760944 scopus 로고    scopus 로고
    • How are we going to discover new cancer biomarkers? A proteomic approach for bladder cancer
    • Diamandis EP. How are we going to discover new cancer biomarkers? A proteomic approach for bladder cancer. Clin Chem 2004;50:793-5.
    • (2004) Clin Chem , vol.50 , pp. 793-795
    • Diamandis, E.P.1
  • 2
    • 19944419092 scopus 로고    scopus 로고
    • Evaluation of serum protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry for the detection of prostate cancer: I assessment of platform reproducibility
    • Semmes OJ, Feng Z, Adam BL, et al. Evaluation of serum protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry for the detection of prostate cancer: I assessment of platform reproducibility. Clin Chem 2005;51:102-12.
    • (2005) Clin Chem , vol.51 , pp. 102-112
    • Semmes, O.J.1    Feng, Z.2    Adam, B.L.3
  • 3
    • 33846813746 scopus 로고    scopus 로고
    • Unravelling in vitro variables of major importance for the outcome of mass spectrometry-based serum proteomics
    • West-Nørager M, Kelstrup CD, Schou C, et al. Unravelling in vitro variables of major importance for the outcome of mass spectrometry-based serum proteomics. J Chromatogr B AnalytTechnol Biomed Life Sci 2007;847:30-7.
    • (2007) J Chromatogr B AnalytTechnol Biomed Life Sci , vol.847 , pp. 30-37
    • West-Nørager, M.1    Kelstrup, C.D.2    Schou, C.3
  • 4
    • 2642540143 scopus 로고    scopus 로고
    • Application of SELDITOF mass spectrometry for the identication of differentially expressed proteins in transformed follicular lymphoma
    • Lin Z, Jenson SD, Lim MS, et al. Application of SELDITOF mass spectrometry for the identication of differentially expressed proteins in transformed follicular lymphoma. Mod Pathol 2004;17:670-8.
    • (2004) Mod Pathol , vol.17 , pp. 670-678
    • Lin, Z.1    Jenson, S.D.2    Lim, M.S.3
  • 5
    • 1842559788 scopus 로고    scopus 로고
    • Reproducibility of seldi-tof protein patterns in serum: comparing datasets from different experiments
    • Baggerly KA, Morris JS, Coombes KR. Reproducibility of seldi-tof protein patterns in serum: comparing datasets from different experiments. Bioinformatics 2004;20:777-85.
    • (2004) Bioinformatics , vol.20 , pp. 777-785
    • Baggerly, K.A.1    Morris, J.S.2    Coombes, K.R.3
  • 6
    • 79953134166 scopus 로고    scopus 로고
    • Pre-ProcessingMass Spectrometry Data. Fundamentals of Data Mining in Genomics and Proteomics
    • Coombes KR, Baggerly KR, Morris JS. Pre-ProcessingMass Spectrometry Data, Fundamentals of Data Mining in Genomics and Proteomics. Boston: Kluwer, 2007.
    • (2007) Boston: Kluwer
    • Coombes, K.R.1    Baggerly, K.R.2    Morris, J.S.3
  • 7
    • 16344384887 scopus 로고    scopus 로고
    • The importance of experimental design in proteomic mass spectrometry experiments: Some cautionary tales
    • Hu J, Coombes KR, Morris JS, et al. The importance of experimental design in proteomic mass spectrometry experiments: Some cautionary tales. Brief Funct Genomic Proteomic 2005;3:322-31.
    • (2005) Brief Funct Genomic Proteomic , vol.3 , pp. 322-331
    • Hu, J.1    Coombes, K.R.2    Morris, J.S.3
  • 8
    • 34548810272 scopus 로고    scopus 로고
    • Pretreatment of mass spectral profiles: application to proteomic data
    • Arneberg R, Rajalahti T, Flikka K, et al. Pretreatment of mass spectral profiles: application to proteomic data. Anal Chem 2007;79:7014-26.
    • (2007) Anal Chem , vol.79 , pp. 7014-7026
    • Arneberg, R.1    Rajalahti, T.2    Flikka, K.3
  • 9
    • 18744384734 scopus 로고    scopus 로고
    • Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum
    • Morris JS, Coombes KR, Koomen J, et al. Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics 2005; 21:1764-75.
    • (2005) Bioinformatics , vol.21 , pp. 1764-1775
    • Morris, J.S.1    Coombes, K.R.2    Koomen, J.3
  • 10
    • 52949099571 scopus 로고    scopus 로고
    • Comparison of algorithms for pre-processing of SELDI-TOF mass spectrometry data
    • Cruz-Marcelo A, Guerra R, Vannucci M, et al. Comparison of algorithms for pre-processing of SELDI-TOF mass spectrometry data. Bioinformatics 2008;24:2129-36.
    • (2008) Bioinformatics , vol.24 , pp. 2129-2136
    • Cruz-Marcelo, A.1    Guerra, R.2    Vannucci, M.3
  • 11
    • 60549117342 scopus 로고    scopus 로고
    • Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis
    • Yang C, He Z, Yu W. Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis. BMC Bioinformatics 2009;10:4.
    • (2009) BMC Bioinformatics , vol.10 , pp. 4
    • Yang, C.1    He, Z.2    Yu, W.3
  • 12
    • 34247113373 scopus 로고    scopus 로고
    • Nonparametric pre-processing methods and inference tools for analyzing time-of-flight mass spectrometry data
    • Antoniadis A, Bigot J, Lambert-Lacroix S, et al. Nonparametric pre-processing methods and inference tools for analyzing time-of-flight mass spectrometry data. Curr Anal Chem 2007;3:127-47.
    • (2007) Curr Anal Chem , vol.3 , pp. 127-147
    • Antoniadis, A.1    Bigot, J.2    Lambert-Lacroix, S.3
  • 13
    • 18744411077 scopus 로고    scopus 로고
    • Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform
    • Coombes KR, Tsavachidis S, Morris JS, et al. Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Proteomics 2005;5:4107-17.
    • (2005) Proteomics , vol.5 , pp. 4107-4117
    • Coombes, K.R.1    Tsavachidis, S.2    Morris, J.S.3
  • 14
    • 33748659203 scopus 로고    scopus 로고
    • Improved peak detection in mass spectrum by incorporating continuous wavelet transformbased pattern matching
    • Du P, Kibbe WA, Lin SM. Improved peak detection in mass spectrum by incorporating continuous wavelet transformbased pattern matching. Bioinformatics 2006;22: 2059-65.
    • (2006) Bioinformatics , vol.22 , pp. 2059-2065
    • Du, P.1    Kibbe, W.A.2    Lin, S.M.3
  • 15
    • 49749120982 scopus 로고    scopus 로고
    • A novel wavelet-based thresholding method for the pre-processing of mass spectrometry data that accounts for heterogeneous noise
    • Kwon D, Vannucci M, Song JJ, et al. A novel wavelet-based thresholding method for the pre-processing of mass spectrometry data that accounts for heterogeneous noise. Proteomics 2008;8:3019-29.
    • (2008) Proteomics , vol.8 , pp. 3019-3029
    • Kwon, D.1    Vannucci, M.2    Song, J.J.3
  • 16
    • 79953128523 scopus 로고    scopus 로고
    • Multivariate denoising methods combining Wavelets and PCA for mass spectrometry data
    • In Press
    • Mostacci E, Truntzer C, Cardot H, et al. Multivariate denoising methods combining Wavelets and PCA for mass spectrometry data. Proteomics. In Press.
    • Proteomics
    • Mostacci, E.1    Truntzer, C.2    Cardot, H.3
  • 17
    • 0036130648 scopus 로고    scopus 로고
    • ProteinChip clinical proteomics: computational challenges and solutions
    • Fung ET, Enderwick C. ProteinChip clinical proteomics: computational challenges and solutions. Biotechniques 2002; 34(Suppl 8):40-1.
    • (2002) Biotechniques , vol.34 , Issue.SUPPL. 8 , pp. 40-41
    • Fung, E.T.1    Enderwick, C.2
  • 18
    • 33745599617 scopus 로고    scopus 로고
    • Finding regions of significance in SELDI measurements for identifying protein biomarkers
    • Tan CS, Ploner A, Quandt A, et al. Finding regions of significance in SELDI measurements for identifying protein biomarkers. Bioinformatics 2006;22:1515-23.
    • Bioinformatics , vol.22 , pp. 1515-1523
    • Tan, C.S.1    Ploner, A.2    Quandt, A.3
  • 19
    • 79953131923 scopus 로고    scopus 로고
    • PROcess: Ciphergen SELDI-TOF Processing
    • R package version 1.16.0
    • Li X. PROcess: Ciphergen SELDI-TOF Processing. 2005.R package version 1.16.0.
    • (2005)
    • Li, X.1
  • 20
    • 19944362482 scopus 로고    scopus 로고
    • Enhancement of sensitivity and resolution of surface-enhanced laser desorption/ionization time-of-flight mass spectrometric records for serum peptides using time-series analysis techniques
    • Malyarenko DI, Cooke WE, Adam BL, et al. Enhancement of sensitivity and resolution of surface-enhanced laser desorption/ionization time-of-flight mass spectrometric records for serum peptides using time-series analysis techniques. Clin Chem 2005;51:65-74.
    • (2005) Clin Chem , vol.51 , pp. 65-74
    • Malyarenko, D.I.1    Cooke, W.E.2    Adam, B.L.3
  • 21
    • 33749646152 scopus 로고    scopus 로고
    • Peak quantification in surface-enhanced laser desorption/ionization by using mixture models
    • Dijkstra M, Roelofsen H, Vonk RJ, et al. Peak quantification in surface-enhanced laser desorption/ionization by using mixture models. Proteomics 2006;6: 5106-16.
    • (2006) Proteomics , vol.6 , pp. 5106-5116
    • Dijkstra, M.1    Roelofsen, H.2    Vonk, R.J.3
  • 22
    • 25144448206 scopus 로고    scopus 로고
    • Algorithms for alignment of mass spectrometry proteomic data
    • Jeffries N. Algorithms for alignment of mass spectrometry proteomic data. Bioinformatics 2005;21:3066-73.
    • (2005) Bioinformatics , vol.21 , pp. 3066-3073
    • Jeffries, N.1
  • 23
    • 18744372755 scopus 로고    scopus 로고
    • SpecAlign_processing and alignment of mass spectra datasets
    • Wong JWH, Cagney G, Cartwright HM. SpecAlign_processing and alignment of mass spectra datasets. Bioinformatics 2005;21:2088-90.
    • (2005) Bioinformatics , vol.21 , pp. 2088-2090
    • Wong, J.W.H.1    Cagney, G.2    Cartwright, H.M.3
  • 25
    • 75849128985 scopus 로고    scopus 로고
    • Bayesian approach to the alignment of mass spectra
    • Kong X, Reilly CA. Bayesian approach to the alignment of mass spectra. Bioinformatics 2009;25:3213-20.
    • (2009) Bioinformatics , vol.25 , pp. 3213-3220
    • Kong, X.1    Reilly, C.A.2
  • 26
    • 79953147853 scopus 로고    scopus 로고
    • Alignment of protein mass spectrometry data by integrated Markov chain shifting method
    • Feng Y, Ma W, Wang Z, et al. Alignment of protein mass spectrometry data by integrated Markov chain shifting method. Statistics and Its Interface 2009;2:329-40.
    • (2009) Statistics and Its Interface , vol.2 , pp. 329-340
    • Feng, Y.1    Ma, W.2    Wang, Z.3
  • 27
    • 38149060091 scopus 로고    scopus 로고
    • Proteomic profiling using mass spectrometry - does normalising by total ion current potentially mask some biological differences?
    • Cairns DA, Thompson D, Perkins DN, et al. Proteomic profiling using mass spectrometry - does normalising by total ion current potentially mask some biological differences? Proteomics 2008;8:21-7.
    • (2008) Proteomics , vol.8 , pp. 21-27
    • Cairns, D.A.1    Thompson, D.2    Perkins, D.N.3
  • 28
    • 39849093716 scopus 로고    scopus 로고
    • Comparison of normalisation methods for surface-enhanced laser desorption and ionisation (seldi) time-of-flight (tof) mass spectrometry data
    • Meuleman W, Engwegen J, Gast M, et al. Comparison of normalisation methods for surface-enhanced laser desorption and ionisation (seldi) time-of-flight (tof) mass spectrometry data. BMC Bioinformatics 2008;9:88.
    • (2008) BMC Bioinformatics , vol.9 , pp. 88
    • Meuleman, W.1    Engwegen, J.2    Gast, M.3
  • 29
    • 0142008803 scopus 로고    scopus 로고
    • A data analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection
    • Yasui Y, Pepe M, Thompson ML, et al. A data analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics 2003;4:449-63.
    • (2003) Biostatistics , vol.4 , pp. 449-463
    • Yasui, Y.1    Pepe, M.2    Thompson, M.L.3
  • 30
    • 0141615786 scopus 로고    scopus 로고
    • Quality control and peak finding for proteomics data collected from nipple aspirate fluid by surface-enhanced laser desorption and ionization
    • Coombes KR, Fritsche J, Clarke C, et al. Quality control and peak finding for proteomics data collected from nipple aspirate fluid by surface-enhanced laser desorption and ionization. Clin Chem 2003;49:1615-23.
    • (2003) Clin Chem , vol.49 , pp. 1615-1623
    • Coombes, K.R.1    Fritsche, J.2    Clarke, C.3
  • 31
    • 29244440404 scopus 로고    scopus 로고
    • Quantifying peptide signal in MALDI-TOF mass spectrometry data
    • Randolph TW, Mitchell BL, McLerran DF, et al. Quantifying peptide signal in MALDI-TOF mass spectrometry data. Mol Cell Proteomics 2005;4:1990-9.
    • (2005) Mol Cell Proteomics , vol.4 , pp. 1990-1999
    • Randolph, T.W.1    Mitchell, B.L.2    McLerran, D.F.3
  • 32
    • 39049193622 scopus 로고    scopus 로고
    • High accuracy peak picking of proteomics data using wavelet techniques. Pacific Symposium on Biocomputing Maui, Hawaii, USA
    • Lange E, Gropl C, Reinert K, et al. High accuracy peak picking of proteomics data using wavelet techniques. Pacific Symposium on Biocomputing Maui, Hawaii, USA. New Jersy: Word Scientific, 2006;243-54.
    • (2006) New Jersy: Word Scientific , pp. 243-254
    • Lange, E.1    Gropl, C.2    Reinert, K.3
  • 33
    • 35748977591 scopus 로고    scopus 로고
    • Improved model-based, platformindependent feature extraction for mass spectrometry
    • Noy K, Fasulo D. Improved model-based, platformindependent feature extraction for mass spectrometry. Bioinformatics 2007;23:2528-35.
    • (2007) Bioinformatics , vol.23 , pp. 2528-2535
    • Noy, K.1    Fasulo, D.2
  • 34
    • 33646730580 scopus 로고    scopus 로고
    • Automatic deconvolution of isotoperesolved mass spectra Using variable selection and quantized peptide mass distribution
    • Du P, Angeletti RH. Automatic deconvolution of isotoperesolved mass spectra Using variable selection and quantized peptide mass distribution. Anal Chem 2006;78:3385-92.
    • (2006) Anal Chem , vol.78 , pp. 3385-3392
    • Du, P.1    Angeletti, R.H.2
  • 35
    • 0035908491 scopus 로고    scopus 로고
    • Phases of biomarker development for early detection of cancer
    • Pepe MS, Etzioni R, Feng Z, et al. Phases of biomarker development for early detection of cancer. JNCI 2001;93: 1054-61.
    • (2001) JNCI , vol.93 , pp. 1054-1061
    • Pepe, M.S.1    Etzioni, R.2    Feng, Z.3
  • 36
    • 23844534811 scopus 로고    scopus 로고
    • REporting recommendations for tumor MARKer prognostic studies (REMARK)
    • McShane LM, Altman DG, Sauerbrei W, et al. REporting recommendations for tumor MARKer prognostic studies (REMARK). JNCI 2005;97:1180-4.
    • (2005) JNCI , vol.97 , pp. 1180-1184
    • McShane, L.M.1    Altman, D.G.2    Sauerbrei, W.3
  • 37
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. JRSS B 1995;57:289-300.
    • (1995) JRSS B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 38
    • 0043203327 scopus 로고    scopus 로고
    • Multiple hypothesis testing in microarray experiments
    • Dudoit S, Shaffer J, Boldrick J. Multiple hypothesis testing in microarray experiments. Stat Sci 2003;18:71-103.
    • (2003) Stat Sci , vol.18 , pp. 71-103
    • Dudoit, S.1    Shaffer, J.2    Boldrick, J.3
  • 39
    • 0042424602 scopus 로고    scopus 로고
    • Statistical significance for genomewide studies
    • Storey JD, Tibshirani R. Statistical significance for genomewide studies. ProcNatl Acad SciUSA 2004;100:9440-5.
    • (2004) ProcNatl Acad SciUSA , vol.100 , pp. 9440-9445
    • Storey, J.D.1    Tibshirani, R.2
  • 40
    • 0037114470 scopus 로고    scopus 로고
    • Power and sample size for DNA microarray studies
    • Lee M-LT, Whitmore GA. Power and sample size for DNA microarray studies. StatMed 2002;21:3543-70.
    • (2002) StatMed , vol.21 , pp. 3543-3570
    • Lee, M.-L.1    Whitmore, G.A.2
  • 41
    • 27544510142 scopus 로고    scopus 로고
    • Bias in the estimation of false discovery rate in microarray studies
    • Pawitan Y, Murthy KR, Michiels S, et al. Bias in the estimation of false discovery rate in microarray studies. Bioinformatics 2005;21(20):3865-72.
    • (2005) Bioinformatics , vol.21 , Issue.20 , pp. 3865-3872
    • Pawitan, Y.1    Murthy, K.R.2    Michiels, S.3
  • 43
    • 57049093234 scopus 로고    scopus 로고
    • Comparative optimism in models involving both classical clinical and gene expression information
    • Truntzer C, Maucort-Boulch D, Roy P. Comparative optimism in models involving both classical clinical and gene expression information. BMC Bioinformatics 2008;9:434.
    • (2008) BMC Bioinformatics , vol.9 , pp. 434
    • Truntzer, C.1    Maucort-Boulch, D.2    Roy, P.3
  • 45
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. Regression shrinkage and selection via the Lasso. JRStat Soc B 1996;58:267-88.
    • (1996) JRStat Soc B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 48
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox regression analysis in the highdimensional and low-sample size settings, with applications to microarray gene expression data
    • Gui J, Li H. Penalized Cox regression analysis in the highdimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 2005;21: 3001-8.
    • (2005) Bioinformatics , vol.21 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 49
    • 33947684306 scopus 로고    scopus 로고
    • Importance of data structure in comparing two dimension reduction methods for classification of microarray gene expression data
    • Truntzer C, Mercier C, Estève J, et al. Importance of data structure in comparing two dimension reduction methods for classification of microarray gene expression data. BMC Bioinformatics 2007;8:90.
    • (2007) BMC Bioinformatics , vol.8 , pp. 90
    • Truntzer, C.1    Mercier, C.2    Estève, J.3
  • 50
    • 20444448822 scopus 로고    scopus 로고
    • PLS dimension reduction for classification with microarray data
    • Boulesteix AL. PLS dimension reduction for classification with microarray data. Stat Appl Genet Mol Biol 2004;3: Article33.
    • (2004) Stat Appl Genet Mol Biol , vol.3
    • Boulesteix, A.L.1
  • 51
    • 0141738784 scopus 로고    scopus 로고
    • Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
    • Wu B, Abbott T, Fishman D, et al. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 2003;19:1636-43.
    • (2003) Bioinformatics , vol.19 , pp. 1636-1643
    • Wu, B.1    Abbott, T.2    Fishman, D.3
  • 53
    • 42749090969 scopus 로고    scopus 로고
    • A new genetic algorithm in proteomics: feature selection for SELDI-TOF data
    • Reynes C, Sabatier R, Molinari N, et al. A new genetic algorithm in proteomics: feature selection for SELDI-TOF data. Comput Stat Data Anal 2008;52:4380-94.
    • (2008) Comput Stat Data Anal , vol.52 , pp. 4380-4394
    • Reynes, C.1    Sabatier, R.2    Molinari, N.3
  • 54
    • 12944265461 scopus 로고    scopus 로고
    • Plasma protein profiling for diagnosis of pancreatic cancer reveals the presence of host response proteins
    • Koomen JM, Shih LN, Coombes KR, et al. Plasma protein profiling for diagnosis of pancreatic cancer reveals the presence of host response proteins. Clin Cancer Res 2005;11: 1110-8.
    • (2005) Clin Cancer Res , vol.11 , pp. 1110-1118
    • Koomen, J.M.1    Shih, L.N.2    Coombes, K.R.3
  • 55
    • 0037116832 scopus 로고    scopus 로고
    • Use of proteomic patterns in serum to identify ovarian cancer
    • Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359:572-7.
    • (2002) Lancet , vol.359 , pp. 572-577
    • Petricoin, E.F.1    Ardekani, A.M.2    Hitt, B.A.3
  • 56
    • 3543076921 scopus 로고    scopus 로고
    • Application of the GA/KNN method to SELDI proteomics data
    • Li L, Umbach DM, Terry P, et al. Application of the GA/KNN method to SELDI proteomics data. Bioinformatics 2004;20:1638-40.
    • (2004) Bioinformatics , vol.20 , pp. 1638-1640
    • Li, L.1    Umbach, D.M.2    Terry, P.3
  • 57
    • 85047692735 scopus 로고    scopus 로고
    • Using decision forest to classify prostate cancer samples on the basis of SELDITOF MS data: assessing chance correlation and prediction confidence
    • Tong W, Xie Q, Hong H, et al. Using decision forest to classify prostate cancer samples on the basis of SELDITOF MS data: assessing chance correlation and prediction confidence. EnvironHealth Perspect 2004;112:1622-7.
    • (2004) EnvironHealth Perspect , vol.112 , pp. 1622-1627
    • Tong, W.1    Xie, Q.2    Hong, H.3
  • 60
    • 0034728356 scopus 로고    scopus 로고
    • What do we mean by validating a prognostic model?
    • Altman DG, Royston P. What do we mean by validating a prognostic model? StatMed 2000;29:453-73.
    • (2000) StatMed , vol.29 , pp. 453-473
    • Altman, D.G.1    Royston, P.2
  • 61
    • 79953149462 scopus 로고    scopus 로고
    • Regression Modelling Strategy with Applications in Linear Models
    • New York: Springer
    • Harrell F. Regression Modelling Strategy with Applications in Linear Models, Logistic Regression and Survival Model. New York: Springer, 2002.
    • (2002) Logistic Regression and Survival Model
    • Harrell, F.1
  • 62
    • 33646252011 scopus 로고    scopus 로고
    • Processing and classification of protein mass spectra
    • Hilario M, Kalousis A, Pellegrini C, et al. Processing and classification of protein mass spectra. Mass Spectrom Rev 2006;25:409-49.
    • (2006) Mass Spectrom Rev , vol.25 , pp. 409-449
    • Hilario, M.1    Kalousis, A.2    Pellegrini, C.3
  • 63
    • 2342571696 scopus 로고    scopus 로고
    • Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker
    • Pepe MS, Janes H, Longton G, et al. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. AmJ Epidemiol 2004;159:882-90.
    • (2004) AmJ Epidemiol , vol.159 , pp. 882-890
    • Pepe, M.S.1    Janes, H.2    Longton, G.3
  • 64
    • 45749085362 scopus 로고    scopus 로고
    • The predictive receiver operating characteristic curve for the joint assessment of the positive and negative predictive values
    • Shiu SY, Gatsonis C. The predictive receiver operating characteristic curve for the joint assessment of the positive and negative predictive values. PhilTrans RSoc A 2008;366: 2313-33.
    • (2008) PhilTrans RSoc A , vol.366 , pp. 2313-2333
    • Shiu, S.Y.1    Gatsonis, C.2
  • 66
    • 34248334942 scopus 로고    scopus 로고
    • Reproducibility in protein profiling by malditof mass spectrometry
    • Albrethsen J. Reproducibility in protein profiling by malditof mass spectrometry. Clin Chem 2007;53:852-8.
    • (2007) Clin Chem , vol.53 , pp. 852-858
    • Albrethsen, J.1
  • 68
    • 45549105194 scopus 로고    scopus 로고
    • Reproducibility of mass spectrometry based protein profiles for diagnosis of breast cancer across clinical studies: a systematic review
    • Callesen AK, Vach W, Jørgensen PE, et al. Reproducibility of mass spectrometry based protein profiles for diagnosis of breast cancer across clinical studies: a systematic review. J ProteomeRes 2008;7:1395-402.
    • (2008) J ProteomeRes , vol.7 , pp. 1395-1402
    • Callesen, A.K.1    Vach, W.2    Jørgensen, P.E.3
  • 69
    • 16344384887 scopus 로고    scopus 로고
    • The importance of experimental design in proteomic mass spectrometry experiments: some cautionary tales
    • Hu J, Coombes KR, Morris JS, et al. The importance of experimental design in proteomic mass spectrometry experiments: some cautionary tales. Brief Funct Genomic Proteomic 2005;3:322-31.
    • (2005) Brief Funct Genomic Proteomic , vol.3 , pp. 322-331
    • Hu, J.1    Coombes, K.R.2    Morris, J.S.3
  • 70
    • 66749171697 scopus 로고    scopus 로고
    • Statistical design of quantitative mass spectrometry-based proteomic profiling experiments
    • Oberg A, Vitek O. Statistical design of quantitative mass spectrometry-based proteomic profiling experiments. J ProteomeRes 2009;8:2144-56.
    • (2009) J ProteomeRes , vol.8 , pp. 2144-2156
    • Oberg, A.1    Vitek, O.2
  • 71
    • 59449088180 scopus 로고    scopus 로고
    • Sample size determination in clinical proteomic profiling experiments using mass spectrometry for class comparison
    • Cairns DA, Barrett JH, Billingham LJ, et al. Sample size determination in clinical proteomic profiling experiments using mass spectrometry for class comparison. Proteomics 2009;9:74-86.
    • (2009) Proteomics , vol.9 , pp. 74-86
    • Cairns, D.A.1    Barrett, J.H.2    Billingham, L.J.3
  • 72
    • 4143134783 scopus 로고    scopus 로고
    • Finding predictive gene groups from microarray data
    • Dettling M, Bühlmann P. Finding predictive gene groups from microarray data. JMultivarAnal 2004;90(1):106-31.
    • (2004) JMultivarAnal , vol.90 , Issue.1 , pp. 106-131
    • Dettling, M.1    Bühlmann, P.2
  • 73
    • 33747891871 scopus 로고    scopus 로고
    • Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
    • Gevaert O, Smet FD, Timmerman D, et al. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 2006;22: 184-90.
    • (2006) Bioinformatics , vol.22 , pp. 184-190
    • Gevaert, O.1    Smet, F.D.2    Timmerman, D.3
  • 74
    • 32544434981 scopus 로고    scopus 로고
    • Survival prediction of diffuse large-B-cell lymphoma based on both clinical and gene expression information
    • Li L. Survival prediction of diffuse large-B-cell lymphoma based on both clinical and gene expression information. Bioinformatics 2006;22:466-71.
    • (2006) Bioinformatics , vol.22 , pp. 466-471
    • Li, L.1
  • 76
    • 39449093646 scopus 로고    scopus 로고
    • Allowing for mandatory covariates in boosting stimation of sparse high-dimensional survival models
    • Binder H, Schumacher M. Allowing for mandatory covariates in boosting stimation of sparse high-dimensional survival models. BMC Bioinformatics 2008;9:14.
    • (2008) BMC Bioinformatics , vol.9 , pp. 14
    • Binder, H.1    Schumacher, M.2
  • 77
    • 48249110665 scopus 로고    scopus 로고
    • Microarray-based classification and clinical predictors: on combined classifiers and additional predictive value
    • Boulesteix A, Porzelius C, Daumer M. Microarray-based classification and clinical predictors: on combined classifiers and additional predictive value. Bioinformatics 2008;24: 1698-706.
    • (2008) Bioinformatics , vol.24 , pp. 1698-1706
    • Boulesteix, A.1    Porzelius, C.2    Daumer, M.3
  • 78
    • 77952832318 scopus 로고    scopus 로고
    • Integrative mixture of experts to combine clinical factors and gene markers
    • to appear
    • Le Cao K, Meugnier E, McLachlan GJ. Integrative mixture of experts to combine clinical factors and gene markers. Bioinformatics 2010. to appear.
    • (2010) Bioinformatics
    • Le Cao, K.1    Meugnier, E.2    McLachlan, G.J.3
  • 79
    • 77949911450 scopus 로고    scopus 로고
    • Testing the additional predictive value of high-dimensional molecular data
    • Boulesteix A, Hothorn T. Testing the additional predictive value of high-dimensional molecular data. BMC Bioinformatics 2010;11:78.
    • (2010) BMC Bioinformatics , vol.11 , pp. 78
    • Boulesteix, A.1    Hothorn, T.2
  • 80
    • 70350694448 scopus 로고    scopus 로고
    • IntegrOmics: an R package to unravel relationships between two omics data sets
    • Le Cao K, Gonzalez I, Dejean S. IntegrOmics: an R package to unravel relationships between two omics data sets. Bioinformatics 2009;25:2855-6.
    • (2009) Bioinformatics , vol.25 , pp. 2855-2856
    • Le Cao, K.1    Gonzalez, I.2    Dejean, S.3
  • 81
    • 58149375807 scopus 로고    scopus 로고
    • Label-free mass spectrometry-based protein quantification technologies in proteomic analysis
    • Wang M, You J, Bemis KG, et al. Label-free mass spectrometry-based protein quantification technologies in proteomic analysis. Brief Funct Genomics Proteomics 2008;7: 329-39.
    • (2008) Brief Funct Genomics Proteomics , vol.7 , pp. 329-339
    • Wang, M.1    You, J.2    Bemis, K.G.3
  • 82
    • 42049094894 scopus 로고    scopus 로고
    • Computational methods for the comparative quantification of proteins in label-free LCn-MS experiments
    • Wong JWH, Sullivan MJ, Cagney G. Computational methods for the comparative quantification of proteins in label-free LCn-MS experiments. Brief Bioinform 2008;9: 156-65.
    • (2008) Brief Bioinform , vol.9 , pp. 156-165
    • Wong, J.W.H.1    Sullivan, M.J.2    Cagney, G.3
  • 83
    • 70349885489 scopus 로고    scopus 로고
    • Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition
    • Karpievitch YV, Taverner T, Adkins JN, et al. Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition. Bioinformatics 2009;25:2573-80.
    • (2009) Bioinformatics , vol.25 , pp. 2573-2580
    • Karpievitch, Y.V.1    Taverner, T.2    Adkins, J.N.3
  • 84
    • 67650733222 scopus 로고    scopus 로고
    • apLCMS-adaptive processing of high-resolution LC/MS data
    • Yu T, Park Y, Johnson JM, Jones DP. apLCMS-adaptive processing of high-resolution LC/MS data. Bioinformatics 2009;25:1930-6.
    • (2009) Bioinformatics , vol.25 , pp. 1930-1936
    • Yu, T.1    Park, Y.2    Johnson, J.M.3    Jones, D.P.4
  • 85
    • 77949519484 scopus 로고    scopus 로고
    • On the betabinomial model for analysis of spectral count data in labelfree tandem mass spectrometry-based proteomics
    • Pham TV, Piersma SR, Warmoes M, et al. On the betabinomial model for analysis of spectral count data in labelfree tandem mass spectrometry-based proteomics. Bioinformatics 2010;26:363-9.
    • (2010) Bioinformatics , vol.26 , pp. 363-369
    • Pham, T.V.1    Piersma, S.R.2    Warmoes, M.3
  • 86
    • 33644845960 scopus 로고    scopus 로고
    • Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF
    • Wu WW, Wang G, Baek SJ, Shen RF. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 2006;5:651-8.
    • (2006) J Proteome Res , vol.5 , pp. 651-658
    • Wu, W.W.1    Wang, G.2    Baek, S.J.3    Shen, R.F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.