-
1
-
-
2142760944
-
How are we going to discover new cancer biomarkers? A proteomic approach for bladder cancer
-
Diamandis EP. How are we going to discover new cancer biomarkers? A proteomic approach for bladder cancer. Clin Chem 2004;50:793-5.
-
(2004)
Clin Chem
, vol.50
, pp. 793-795
-
-
Diamandis, E.P.1
-
2
-
-
19944419092
-
Evaluation of serum protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry for the detection of prostate cancer: I assessment of platform reproducibility
-
Semmes OJ, Feng Z, Adam BL, et al. Evaluation of serum protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry for the detection of prostate cancer: I assessment of platform reproducibility. Clin Chem 2005;51:102-12.
-
(2005)
Clin Chem
, vol.51
, pp. 102-112
-
-
Semmes, O.J.1
Feng, Z.2
Adam, B.L.3
-
3
-
-
33846813746
-
Unravelling in vitro variables of major importance for the outcome of mass spectrometry-based serum proteomics
-
West-Nørager M, Kelstrup CD, Schou C, et al. Unravelling in vitro variables of major importance for the outcome of mass spectrometry-based serum proteomics. J Chromatogr B AnalytTechnol Biomed Life Sci 2007;847:30-7.
-
(2007)
J Chromatogr B AnalytTechnol Biomed Life Sci
, vol.847
, pp. 30-37
-
-
West-Nørager, M.1
Kelstrup, C.D.2
Schou, C.3
-
4
-
-
2642540143
-
Application of SELDITOF mass spectrometry for the identication of differentially expressed proteins in transformed follicular lymphoma
-
Lin Z, Jenson SD, Lim MS, et al. Application of SELDITOF mass spectrometry for the identication of differentially expressed proteins in transformed follicular lymphoma. Mod Pathol 2004;17:670-8.
-
(2004)
Mod Pathol
, vol.17
, pp. 670-678
-
-
Lin, Z.1
Jenson, S.D.2
Lim, M.S.3
-
5
-
-
1842559788
-
Reproducibility of seldi-tof protein patterns in serum: comparing datasets from different experiments
-
Baggerly KA, Morris JS, Coombes KR. Reproducibility of seldi-tof protein patterns in serum: comparing datasets from different experiments. Bioinformatics 2004;20:777-85.
-
(2004)
Bioinformatics
, vol.20
, pp. 777-785
-
-
Baggerly, K.A.1
Morris, J.S.2
Coombes, K.R.3
-
6
-
-
79953134166
-
Pre-ProcessingMass Spectrometry Data. Fundamentals of Data Mining in Genomics and Proteomics
-
Coombes KR, Baggerly KR, Morris JS. Pre-ProcessingMass Spectrometry Data, Fundamentals of Data Mining in Genomics and Proteomics. Boston: Kluwer, 2007.
-
(2007)
Boston: Kluwer
-
-
Coombes, K.R.1
Baggerly, K.R.2
Morris, J.S.3
-
7
-
-
16344384887
-
The importance of experimental design in proteomic mass spectrometry experiments: Some cautionary tales
-
Hu J, Coombes KR, Morris JS, et al. The importance of experimental design in proteomic mass spectrometry experiments: Some cautionary tales. Brief Funct Genomic Proteomic 2005;3:322-31.
-
(2005)
Brief Funct Genomic Proteomic
, vol.3
, pp. 322-331
-
-
Hu, J.1
Coombes, K.R.2
Morris, J.S.3
-
8
-
-
34548810272
-
Pretreatment of mass spectral profiles: application to proteomic data
-
Arneberg R, Rajalahti T, Flikka K, et al. Pretreatment of mass spectral profiles: application to proteomic data. Anal Chem 2007;79:7014-26.
-
(2007)
Anal Chem
, vol.79
, pp. 7014-7026
-
-
Arneberg, R.1
Rajalahti, T.2
Flikka, K.3
-
9
-
-
18744384734
-
Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum
-
Morris JS, Coombes KR, Koomen J, et al. Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics 2005; 21:1764-75.
-
(2005)
Bioinformatics
, vol.21
, pp. 1764-1775
-
-
Morris, J.S.1
Coombes, K.R.2
Koomen, J.3
-
10
-
-
52949099571
-
Comparison of algorithms for pre-processing of SELDI-TOF mass spectrometry data
-
Cruz-Marcelo A, Guerra R, Vannucci M, et al. Comparison of algorithms for pre-processing of SELDI-TOF mass spectrometry data. Bioinformatics 2008;24:2129-36.
-
(2008)
Bioinformatics
, vol.24
, pp. 2129-2136
-
-
Cruz-Marcelo, A.1
Guerra, R.2
Vannucci, M.3
-
11
-
-
60549117342
-
Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis
-
Yang C, He Z, Yu W. Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis. BMC Bioinformatics 2009;10:4.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 4
-
-
Yang, C.1
He, Z.2
Yu, W.3
-
12
-
-
34247113373
-
Nonparametric pre-processing methods and inference tools for analyzing time-of-flight mass spectrometry data
-
Antoniadis A, Bigot J, Lambert-Lacroix S, et al. Nonparametric pre-processing methods and inference tools for analyzing time-of-flight mass spectrometry data. Curr Anal Chem 2007;3:127-47.
-
(2007)
Curr Anal Chem
, vol.3
, pp. 127-147
-
-
Antoniadis, A.1
Bigot, J.2
Lambert-Lacroix, S.3
-
13
-
-
18744411077
-
Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform
-
Coombes KR, Tsavachidis S, Morris JS, et al. Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Proteomics 2005;5:4107-17.
-
(2005)
Proteomics
, vol.5
, pp. 4107-4117
-
-
Coombes, K.R.1
Tsavachidis, S.2
Morris, J.S.3
-
14
-
-
33748659203
-
Improved peak detection in mass spectrum by incorporating continuous wavelet transformbased pattern matching
-
Du P, Kibbe WA, Lin SM. Improved peak detection in mass spectrum by incorporating continuous wavelet transformbased pattern matching. Bioinformatics 2006;22: 2059-65.
-
(2006)
Bioinformatics
, vol.22
, pp. 2059-2065
-
-
Du, P.1
Kibbe, W.A.2
Lin, S.M.3
-
15
-
-
49749120982
-
A novel wavelet-based thresholding method for the pre-processing of mass spectrometry data that accounts for heterogeneous noise
-
Kwon D, Vannucci M, Song JJ, et al. A novel wavelet-based thresholding method for the pre-processing of mass spectrometry data that accounts for heterogeneous noise. Proteomics 2008;8:3019-29.
-
(2008)
Proteomics
, vol.8
, pp. 3019-3029
-
-
Kwon, D.1
Vannucci, M.2
Song, J.J.3
-
16
-
-
79953128523
-
Multivariate denoising methods combining Wavelets and PCA for mass spectrometry data
-
In Press
-
Mostacci E, Truntzer C, Cardot H, et al. Multivariate denoising methods combining Wavelets and PCA for mass spectrometry data. Proteomics. In Press.
-
Proteomics
-
-
Mostacci, E.1
Truntzer, C.2
Cardot, H.3
-
17
-
-
0036130648
-
ProteinChip clinical proteomics: computational challenges and solutions
-
Fung ET, Enderwick C. ProteinChip clinical proteomics: computational challenges and solutions. Biotechniques 2002; 34(Suppl 8):40-1.
-
(2002)
Biotechniques
, vol.34
, Issue.SUPPL. 8
, pp. 40-41
-
-
Fung, E.T.1
Enderwick, C.2
-
18
-
-
33745599617
-
Finding regions of significance in SELDI measurements for identifying protein biomarkers
-
Tan CS, Ploner A, Quandt A, et al. Finding regions of significance in SELDI measurements for identifying protein biomarkers. Bioinformatics 2006;22:1515-23.
-
Bioinformatics
, vol.22
, pp. 1515-1523
-
-
Tan, C.S.1
Ploner, A.2
Quandt, A.3
-
19
-
-
79953131923
-
PROcess: Ciphergen SELDI-TOF Processing
-
R package version 1.16.0
-
Li X. PROcess: Ciphergen SELDI-TOF Processing. 2005.R package version 1.16.0.
-
(2005)
-
-
Li, X.1
-
20
-
-
19944362482
-
Enhancement of sensitivity and resolution of surface-enhanced laser desorption/ionization time-of-flight mass spectrometric records for serum peptides using time-series analysis techniques
-
Malyarenko DI, Cooke WE, Adam BL, et al. Enhancement of sensitivity and resolution of surface-enhanced laser desorption/ionization time-of-flight mass spectrometric records for serum peptides using time-series analysis techniques. Clin Chem 2005;51:65-74.
-
(2005)
Clin Chem
, vol.51
, pp. 65-74
-
-
Malyarenko, D.I.1
Cooke, W.E.2
Adam, B.L.3
-
21
-
-
33749646152
-
Peak quantification in surface-enhanced laser desorption/ionization by using mixture models
-
Dijkstra M, Roelofsen H, Vonk RJ, et al. Peak quantification in surface-enhanced laser desorption/ionization by using mixture models. Proteomics 2006;6: 5106-16.
-
(2006)
Proteomics
, vol.6
, pp. 5106-5116
-
-
Dijkstra, M.1
Roelofsen, H.2
Vonk, R.J.3
-
22
-
-
25144448206
-
Algorithms for alignment of mass spectrometry proteomic data
-
Jeffries N. Algorithms for alignment of mass spectrometry proteomic data. Bioinformatics 2005;21:3066-73.
-
(2005)
Bioinformatics
, vol.21
, pp. 3066-3073
-
-
Jeffries, N.1
-
23
-
-
18744372755
-
SpecAlign_processing and alignment of mass spectra datasets
-
Wong JWH, Cagney G, Cartwright HM. SpecAlign_processing and alignment of mass spectra datasets. Bioinformatics 2005;21:2088-90.
-
(2005)
Bioinformatics
, vol.21
, pp. 2088-2090
-
-
Wong, J.W.H.1
Cagney, G.2
Cartwright, H.M.3
-
25
-
-
75849128985
-
Bayesian approach to the alignment of mass spectra
-
Kong X, Reilly CA. Bayesian approach to the alignment of mass spectra. Bioinformatics 2009;25:3213-20.
-
(2009)
Bioinformatics
, vol.25
, pp. 3213-3220
-
-
Kong, X.1
Reilly, C.A.2
-
26
-
-
79953147853
-
Alignment of protein mass spectrometry data by integrated Markov chain shifting method
-
Feng Y, Ma W, Wang Z, et al. Alignment of protein mass spectrometry data by integrated Markov chain shifting method. Statistics and Its Interface 2009;2:329-40.
-
(2009)
Statistics and Its Interface
, vol.2
, pp. 329-340
-
-
Feng, Y.1
Ma, W.2
Wang, Z.3
-
27
-
-
38149060091
-
Proteomic profiling using mass spectrometry - does normalising by total ion current potentially mask some biological differences?
-
Cairns DA, Thompson D, Perkins DN, et al. Proteomic profiling using mass spectrometry - does normalising by total ion current potentially mask some biological differences? Proteomics 2008;8:21-7.
-
(2008)
Proteomics
, vol.8
, pp. 21-27
-
-
Cairns, D.A.1
Thompson, D.2
Perkins, D.N.3
-
28
-
-
39849093716
-
Comparison of normalisation methods for surface-enhanced laser desorption and ionisation (seldi) time-of-flight (tof) mass spectrometry data
-
Meuleman W, Engwegen J, Gast M, et al. Comparison of normalisation methods for surface-enhanced laser desorption and ionisation (seldi) time-of-flight (tof) mass spectrometry data. BMC Bioinformatics 2008;9:88.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 88
-
-
Meuleman, W.1
Engwegen, J.2
Gast, M.3
-
29
-
-
0142008803
-
A data analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection
-
Yasui Y, Pepe M, Thompson ML, et al. A data analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics 2003;4:449-63.
-
(2003)
Biostatistics
, vol.4
, pp. 449-463
-
-
Yasui, Y.1
Pepe, M.2
Thompson, M.L.3
-
30
-
-
0141615786
-
Quality control and peak finding for proteomics data collected from nipple aspirate fluid by surface-enhanced laser desorption and ionization
-
Coombes KR, Fritsche J, Clarke C, et al. Quality control and peak finding for proteomics data collected from nipple aspirate fluid by surface-enhanced laser desorption and ionization. Clin Chem 2003;49:1615-23.
-
(2003)
Clin Chem
, vol.49
, pp. 1615-1623
-
-
Coombes, K.R.1
Fritsche, J.2
Clarke, C.3
-
32
-
-
39049193622
-
High accuracy peak picking of proteomics data using wavelet techniques. Pacific Symposium on Biocomputing Maui, Hawaii, USA
-
Lange E, Gropl C, Reinert K, et al. High accuracy peak picking of proteomics data using wavelet techniques. Pacific Symposium on Biocomputing Maui, Hawaii, USA. New Jersy: Word Scientific, 2006;243-54.
-
(2006)
New Jersy: Word Scientific
, pp. 243-254
-
-
Lange, E.1
Gropl, C.2
Reinert, K.3
-
33
-
-
35748977591
-
Improved model-based, platformindependent feature extraction for mass spectrometry
-
Noy K, Fasulo D. Improved model-based, platformindependent feature extraction for mass spectrometry. Bioinformatics 2007;23:2528-35.
-
(2007)
Bioinformatics
, vol.23
, pp. 2528-2535
-
-
Noy, K.1
Fasulo, D.2
-
34
-
-
33646730580
-
Automatic deconvolution of isotoperesolved mass spectra Using variable selection and quantized peptide mass distribution
-
Du P, Angeletti RH. Automatic deconvolution of isotoperesolved mass spectra Using variable selection and quantized peptide mass distribution. Anal Chem 2006;78:3385-92.
-
(2006)
Anal Chem
, vol.78
, pp. 3385-3392
-
-
Du, P.1
Angeletti, R.H.2
-
35
-
-
0035908491
-
Phases of biomarker development for early detection of cancer
-
Pepe MS, Etzioni R, Feng Z, et al. Phases of biomarker development for early detection of cancer. JNCI 2001;93: 1054-61.
-
(2001)
JNCI
, vol.93
, pp. 1054-1061
-
-
Pepe, M.S.1
Etzioni, R.2
Feng, Z.3
-
36
-
-
23844534811
-
REporting recommendations for tumor MARKer prognostic studies (REMARK)
-
McShane LM, Altman DG, Sauerbrei W, et al. REporting recommendations for tumor MARKer prognostic studies (REMARK). JNCI 2005;97:1180-4.
-
(2005)
JNCI
, vol.97
, pp. 1180-1184
-
-
McShane, L.M.1
Altman, D.G.2
Sauerbrei, W.3
-
37
-
-
0001677717
-
Controlling the false discovery rate: a practical and powerful approach to multiple testing
-
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. JRSS B 1995;57:289-300.
-
(1995)
JRSS B
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
38
-
-
0043203327
-
Multiple hypothesis testing in microarray experiments
-
Dudoit S, Shaffer J, Boldrick J. Multiple hypothesis testing in microarray experiments. Stat Sci 2003;18:71-103.
-
(2003)
Stat Sci
, vol.18
, pp. 71-103
-
-
Dudoit, S.1
Shaffer, J.2
Boldrick, J.3
-
39
-
-
0042424602
-
Statistical significance for genomewide studies
-
Storey JD, Tibshirani R. Statistical significance for genomewide studies. ProcNatl Acad SciUSA 2004;100:9440-5.
-
(2004)
ProcNatl Acad SciUSA
, vol.100
, pp. 9440-9445
-
-
Storey, J.D.1
Tibshirani, R.2
-
40
-
-
0037114470
-
Power and sample size for DNA microarray studies
-
Lee M-LT, Whitmore GA. Power and sample size for DNA microarray studies. StatMed 2002;21:3543-70.
-
(2002)
StatMed
, vol.21
, pp. 3543-3570
-
-
Lee, M.-L.1
Whitmore, G.A.2
-
41
-
-
27544510142
-
Bias in the estimation of false discovery rate in microarray studies
-
Pawitan Y, Murthy KR, Michiels S, et al. Bias in the estimation of false discovery rate in microarray studies. Bioinformatics 2005;21(20):3865-72.
-
(2005)
Bioinformatics
, vol.21
, Issue.20
, pp. 3865-3872
-
-
Pawitan, Y.1
Murthy, K.R.2
Michiels, S.3
-
43
-
-
57049093234
-
Comparative optimism in models involving both classical clinical and gene expression information
-
Truntzer C, Maucort-Boulch D, Roy P. Comparative optimism in models involving both classical clinical and gene expression information. BMC Bioinformatics 2008;9:434.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 434
-
-
Truntzer, C.1
Maucort-Boulch, D.2
Roy, P.3
-
45
-
-
85194972808
-
Regression shrinkage and selection via the Lasso
-
Tibshirani R. Regression shrinkage and selection via the Lasso. JRStat Soc B 1996;58:267-88.
-
(1996)
JRStat Soc B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
48
-
-
21444446838
-
Penalized Cox regression analysis in the highdimensional and low-sample size settings, with applications to microarray gene expression data
-
Gui J, Li H. Penalized Cox regression analysis in the highdimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 2005;21: 3001-8.
-
(2005)
Bioinformatics
, vol.21
, pp. 3001-3008
-
-
Gui, J.1
Li, H.2
-
49
-
-
33947684306
-
Importance of data structure in comparing two dimension reduction methods for classification of microarray gene expression data
-
Truntzer C, Mercier C, Estève J, et al. Importance of data structure in comparing two dimension reduction methods for classification of microarray gene expression data. BMC Bioinformatics 2007;8:90.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 90
-
-
Truntzer, C.1
Mercier, C.2
Estève, J.3
-
50
-
-
20444448822
-
PLS dimension reduction for classification with microarray data
-
Boulesteix AL. PLS dimension reduction for classification with microarray data. Stat Appl Genet Mol Biol 2004;3: Article33.
-
(2004)
Stat Appl Genet Mol Biol
, vol.3
-
-
Boulesteix, A.L.1
-
51
-
-
0141738784
-
Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
-
Wu B, Abbott T, Fishman D, et al. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 2003;19:1636-43.
-
(2003)
Bioinformatics
, vol.19
, pp. 1636-1643
-
-
Wu, B.1
Abbott, T.2
Fishman, D.3
-
53
-
-
42749090969
-
A new genetic algorithm in proteomics: feature selection for SELDI-TOF data
-
Reynes C, Sabatier R, Molinari N, et al. A new genetic algorithm in proteomics: feature selection for SELDI-TOF data. Comput Stat Data Anal 2008;52:4380-94.
-
(2008)
Comput Stat Data Anal
, vol.52
, pp. 4380-4394
-
-
Reynes, C.1
Sabatier, R.2
Molinari, N.3
-
54
-
-
12944265461
-
Plasma protein profiling for diagnosis of pancreatic cancer reveals the presence of host response proteins
-
Koomen JM, Shih LN, Coombes KR, et al. Plasma protein profiling for diagnosis of pancreatic cancer reveals the presence of host response proteins. Clin Cancer Res 2005;11: 1110-8.
-
(2005)
Clin Cancer Res
, vol.11
, pp. 1110-1118
-
-
Koomen, J.M.1
Shih, L.N.2
Coombes, K.R.3
-
55
-
-
0037116832
-
Use of proteomic patterns in serum to identify ovarian cancer
-
Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359:572-7.
-
(2002)
Lancet
, vol.359
, pp. 572-577
-
-
Petricoin, E.F.1
Ardekani, A.M.2
Hitt, B.A.3
-
56
-
-
3543076921
-
Application of the GA/KNN method to SELDI proteomics data
-
Li L, Umbach DM, Terry P, et al. Application of the GA/KNN method to SELDI proteomics data. Bioinformatics 2004;20:1638-40.
-
(2004)
Bioinformatics
, vol.20
, pp. 1638-1640
-
-
Li, L.1
Umbach, D.M.2
Terry, P.3
-
57
-
-
85047692735
-
Using decision forest to classify prostate cancer samples on the basis of SELDITOF MS data: assessing chance correlation and prediction confidence
-
Tong W, Xie Q, Hong H, et al. Using decision forest to classify prostate cancer samples on the basis of SELDITOF MS data: assessing chance correlation and prediction confidence. EnvironHealth Perspect 2004;112:1622-7.
-
(2004)
EnvironHealth Perspect
, vol.112
, pp. 1622-1627
-
-
Tong, W.1
Xie, Q.2
Hong, H.3
-
60
-
-
0034728356
-
What do we mean by validating a prognostic model?
-
Altman DG, Royston P. What do we mean by validating a prognostic model? StatMed 2000;29:453-73.
-
(2000)
StatMed
, vol.29
, pp. 453-473
-
-
Altman, D.G.1
Royston, P.2
-
61
-
-
79953149462
-
Regression Modelling Strategy with Applications in Linear Models
-
New York: Springer
-
Harrell F. Regression Modelling Strategy with Applications in Linear Models, Logistic Regression and Survival Model. New York: Springer, 2002.
-
(2002)
Logistic Regression and Survival Model
-
-
Harrell, F.1
-
62
-
-
33646252011
-
Processing and classification of protein mass spectra
-
Hilario M, Kalousis A, Pellegrini C, et al. Processing and classification of protein mass spectra. Mass Spectrom Rev 2006;25:409-49.
-
(2006)
Mass Spectrom Rev
, vol.25
, pp. 409-449
-
-
Hilario, M.1
Kalousis, A.2
Pellegrini, C.3
-
63
-
-
2342571696
-
Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker
-
Pepe MS, Janes H, Longton G, et al. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. AmJ Epidemiol 2004;159:882-90.
-
(2004)
AmJ Epidemiol
, vol.159
, pp. 882-890
-
-
Pepe, M.S.1
Janes, H.2
Longton, G.3
-
64
-
-
45749085362
-
The predictive receiver operating characteristic curve for the joint assessment of the positive and negative predictive values
-
Shiu SY, Gatsonis C. The predictive receiver operating characteristic curve for the joint assessment of the positive and negative predictive values. PhilTrans RSoc A 2008;366: 2313-33.
-
(2008)
PhilTrans RSoc A
, vol.366
, pp. 2313-2333
-
-
Shiu, S.Y.1
Gatsonis, C.2
-
66
-
-
34248334942
-
Reproducibility in protein profiling by malditof mass spectrometry
-
Albrethsen J. Reproducibility in protein profiling by malditof mass spectrometry. Clin Chem 2007;53:852-8.
-
(2007)
Clin Chem
, vol.53
, pp. 852-858
-
-
Albrethsen, J.1
-
68
-
-
45549105194
-
Reproducibility of mass spectrometry based protein profiles for diagnosis of breast cancer across clinical studies: a systematic review
-
Callesen AK, Vach W, Jørgensen PE, et al. Reproducibility of mass spectrometry based protein profiles for diagnosis of breast cancer across clinical studies: a systematic review. J ProteomeRes 2008;7:1395-402.
-
(2008)
J ProteomeRes
, vol.7
, pp. 1395-1402
-
-
Callesen, A.K.1
Vach, W.2
Jørgensen, P.E.3
-
69
-
-
16344384887
-
The importance of experimental design in proteomic mass spectrometry experiments: some cautionary tales
-
Hu J, Coombes KR, Morris JS, et al. The importance of experimental design in proteomic mass spectrometry experiments: some cautionary tales. Brief Funct Genomic Proteomic 2005;3:322-31.
-
(2005)
Brief Funct Genomic Proteomic
, vol.3
, pp. 322-331
-
-
Hu, J.1
Coombes, K.R.2
Morris, J.S.3
-
70
-
-
66749171697
-
Statistical design of quantitative mass spectrometry-based proteomic profiling experiments
-
Oberg A, Vitek O. Statistical design of quantitative mass spectrometry-based proteomic profiling experiments. J ProteomeRes 2009;8:2144-56.
-
(2009)
J ProteomeRes
, vol.8
, pp. 2144-2156
-
-
Oberg, A.1
Vitek, O.2
-
71
-
-
59449088180
-
Sample size determination in clinical proteomic profiling experiments using mass spectrometry for class comparison
-
Cairns DA, Barrett JH, Billingham LJ, et al. Sample size determination in clinical proteomic profiling experiments using mass spectrometry for class comparison. Proteomics 2009;9:74-86.
-
(2009)
Proteomics
, vol.9
, pp. 74-86
-
-
Cairns, D.A.1
Barrett, J.H.2
Billingham, L.J.3
-
72
-
-
4143134783
-
Finding predictive gene groups from microarray data
-
Dettling M, Bühlmann P. Finding predictive gene groups from microarray data. JMultivarAnal 2004;90(1):106-31.
-
(2004)
JMultivarAnal
, vol.90
, Issue.1
, pp. 106-131
-
-
Dettling, M.1
Bühlmann, P.2
-
73
-
-
33747891871
-
Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
-
Gevaert O, Smet FD, Timmerman D, et al. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 2006;22: 184-90.
-
(2006)
Bioinformatics
, vol.22
, pp. 184-190
-
-
Gevaert, O.1
Smet, F.D.2
Timmerman, D.3
-
74
-
-
32544434981
-
Survival prediction of diffuse large-B-cell lymphoma based on both clinical and gene expression information
-
Li L. Survival prediction of diffuse large-B-cell lymphoma based on both clinical and gene expression information. Bioinformatics 2006;22:466-71.
-
(2006)
Bioinformatics
, vol.22
, pp. 466-471
-
-
Li, L.1
-
76
-
-
39449093646
-
Allowing for mandatory covariates in boosting stimation of sparse high-dimensional survival models
-
Binder H, Schumacher M. Allowing for mandatory covariates in boosting stimation of sparse high-dimensional survival models. BMC Bioinformatics 2008;9:14.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 14
-
-
Binder, H.1
Schumacher, M.2
-
77
-
-
48249110665
-
Microarray-based classification and clinical predictors: on combined classifiers and additional predictive value
-
Boulesteix A, Porzelius C, Daumer M. Microarray-based classification and clinical predictors: on combined classifiers and additional predictive value. Bioinformatics 2008;24: 1698-706.
-
(2008)
Bioinformatics
, vol.24
, pp. 1698-1706
-
-
Boulesteix, A.1
Porzelius, C.2
Daumer, M.3
-
78
-
-
77952832318
-
Integrative mixture of experts to combine clinical factors and gene markers
-
to appear
-
Le Cao K, Meugnier E, McLachlan GJ. Integrative mixture of experts to combine clinical factors and gene markers. Bioinformatics 2010. to appear.
-
(2010)
Bioinformatics
-
-
Le Cao, K.1
Meugnier, E.2
McLachlan, G.J.3
-
79
-
-
77949911450
-
Testing the additional predictive value of high-dimensional molecular data
-
Boulesteix A, Hothorn T. Testing the additional predictive value of high-dimensional molecular data. BMC Bioinformatics 2010;11:78.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 78
-
-
Boulesteix, A.1
Hothorn, T.2
-
80
-
-
70350694448
-
IntegrOmics: an R package to unravel relationships between two omics data sets
-
Le Cao K, Gonzalez I, Dejean S. IntegrOmics: an R package to unravel relationships between two omics data sets. Bioinformatics 2009;25:2855-6.
-
(2009)
Bioinformatics
, vol.25
, pp. 2855-2856
-
-
Le Cao, K.1
Gonzalez, I.2
Dejean, S.3
-
81
-
-
58149375807
-
Label-free mass spectrometry-based protein quantification technologies in proteomic analysis
-
Wang M, You J, Bemis KG, et al. Label-free mass spectrometry-based protein quantification technologies in proteomic analysis. Brief Funct Genomics Proteomics 2008;7: 329-39.
-
(2008)
Brief Funct Genomics Proteomics
, vol.7
, pp. 329-339
-
-
Wang, M.1
You, J.2
Bemis, K.G.3
-
82
-
-
42049094894
-
Computational methods for the comparative quantification of proteins in label-free LCn-MS experiments
-
Wong JWH, Sullivan MJ, Cagney G. Computational methods for the comparative quantification of proteins in label-free LCn-MS experiments. Brief Bioinform 2008;9: 156-65.
-
(2008)
Brief Bioinform
, vol.9
, pp. 156-165
-
-
Wong, J.W.H.1
Sullivan, M.J.2
Cagney, G.3
-
83
-
-
70349885489
-
Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition
-
Karpievitch YV, Taverner T, Adkins JN, et al. Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition. Bioinformatics 2009;25:2573-80.
-
(2009)
Bioinformatics
, vol.25
, pp. 2573-2580
-
-
Karpievitch, Y.V.1
Taverner, T.2
Adkins, J.N.3
-
84
-
-
67650733222
-
apLCMS-adaptive processing of high-resolution LC/MS data
-
Yu T, Park Y, Johnson JM, Jones DP. apLCMS-adaptive processing of high-resolution LC/MS data. Bioinformatics 2009;25:1930-6.
-
(2009)
Bioinformatics
, vol.25
, pp. 1930-1936
-
-
Yu, T.1
Park, Y.2
Johnson, J.M.3
Jones, D.P.4
-
85
-
-
77949519484
-
On the betabinomial model for analysis of spectral count data in labelfree tandem mass spectrometry-based proteomics
-
Pham TV, Piersma SR, Warmoes M, et al. On the betabinomial model for analysis of spectral count data in labelfree tandem mass spectrometry-based proteomics. Bioinformatics 2010;26:363-9.
-
(2010)
Bioinformatics
, vol.26
, pp. 363-369
-
-
Pham, T.V.1
Piersma, S.R.2
Warmoes, M.3
-
86
-
-
33644845960
-
Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF
-
Wu WW, Wang G, Baek SJ, Shen RF. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 2006;5:651-8.
-
(2006)
J Proteome Res
, vol.5
, pp. 651-658
-
-
Wu, W.W.1
Wang, G.2
Baek, S.J.3
Shen, R.F.4
|