메뉴 건너뛰기




Volumn 5, Issue 3, 2011, Pages 2298-2306

Growth from below: Graphene bilayers on Ir(111)

Author keywords

angle resolved photoemission spectroscopy; bilayer graphene; Ir(111); low energy electron diffraction; low energy electron microscopy; Ru(0001); work function

Indexed keywords

ANGLE RESOLVED PHOTOEMISSION SPECTROSCOPY; BI-LAYER; IR(111); LOW ENERGY ELECTRON MICROSCOPY; RU(0001);

EID: 79952912426     PISSN: 19360851     EISSN: 1936086X     Source Type: Journal    
DOI: 10.1021/nn103582g     Document Type: Article
Times cited : (116)

References (48)
  • 4
    • 77955231284 scopus 로고    scopus 로고
    • Graphene Transistors
    • Schwierz, F. Graphene Transistors Nat. Nanotechnol. 2010, 5, 487-496
    • (2010) Nat. Nanotechnol. , vol.5 , pp. 487-496
    • Schwierz, F.1
  • 5
    • 33750162077 scopus 로고    scopus 로고
    • Asymmetry Gap in the Electronic Band Structure of Bilayer Graphene
    • McCann, E. Asymmetry Gap in the Electronic Band Structure of Bilayer Graphene Phys. Rev. B 2006, 74, 161403
    • (2006) Phys. Rev. B , vol.74 , pp. 161403
    • McCann, E.1
  • 6
    • 33747626322 scopus 로고    scopus 로고
    • Controlling the electronic structure of bilayer graphene
    • DOI 10.1126/science.1130681
    • Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the Electronic Structure of Bilayer Graphene Science 2006, 313, 951-954 (Pubitemid 44267382)
    • (2006) Science , vol.313 , Issue.5789 , pp. 951-954
    • Ohta, T.1    Bostwick, A.2    Seyller, T.3    Horn, K.4    Rotenberg, E.5
  • 7
    • 33745311284 scopus 로고    scopus 로고
    • Electronic States and Landau Levels in Graphene Stacks
    • Guinea, F.; Neto, A. H. C.; Peres, N. M. R. Electronic States and Landau Levels in Graphene Stacks Phys. Rev. B 2006, 73, 245426
    • (2006) Phys. Rev. B , vol.73 , pp. 245426
    • Guinea, F.1    Neto, A.H.C.2    Peres, N.M.R.3
  • 9
    • 0000942472 scopus 로고
    • Low Energy Electron Diffraction Studies of Gas Adsorption on the Platinum (100) Single Crystal Surface
    • Morgan, A. E.; Somorjai, G. A. Low Energy Electron Diffraction Studies of Gas Adsorption on the Platinum (100) Single Crystal Surface Surf. Sci. 1968, 12, 405-425
    • (1968) Surf. Sci. , vol.12 , pp. 405-425
    • Morgan, A.E.1    Somorjai, G.A.2
  • 10
    • 18744393673 scopus 로고
    • Platinum Surface LEED Rings
    • May, J. W. Platinum Surface LEED Rings Surf. Sci. 1969, 17, 267-270
    • (1969) Surf. Sci. , vol.17 , pp. 267-270
    • May, J.W.1
  • 11
    • 0016070236 scopus 로고
    • Equilibrium Segregation of Carbon to a Nickel (111) Surface-Surface Phase-Transition
    • Shelton, J. C.; Patil, H. R.; Blakely, J. M. Equilibrium Segregation of Carbon to a Nickel (111) Surface-Surface Phase-Transition Surf. Sci. 1974, 43, 493-520
    • (1974) Surf. Sci. , vol.43 , pp. 493-520
    • Shelton, J.C.1    Patil, H.R.2    Blakely, J.M.3
  • 12
    • 0000917203 scopus 로고
    • Carbon Segregation to Single Crystal Surfaces of Pt, Pd, and Co
    • Hamilton, J. C.; Blakely, J. M. Carbon Segregation to Single Crystal Surfaces of Pt, Pd, and Co Surf. Sci. 1980, 91, 199-217
    • (1980) Surf. Sci. , vol.91 , pp. 199-217
    • Hamilton, J.C.1    Blakely, J.M.2
  • 13
    • 0026836808 scopus 로고
    • STM Investigation of Single Layer Graphite Structures Produced on Pt(111) by Hydrocarbon Decomposition
    • Land, T. A.; Michely, T.; Behm, R. J.; Hemminger, J. C.; Comsa, G. STM Investigation of Single Layer Graphite Structures Produced on Pt(111) by Hydrocarbon Decomposition Surf. Sci. 1992, 264, 261-270
    • (1992) Surf. Sci. , vol.264 , pp. 261-270
    • Land, T.A.1    Michely, T.2    Behm, R.J.3    Hemminger, J.C.4    Comsa, G.5
  • 14
    • 33751299299 scopus 로고    scopus 로고
    • Two-Dimensional Ir Cluster Lattice on a Graphene Moiré on Ir(111)
    • NDiaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely, T. Two-Dimensional Ir Cluster Lattice on a Graphene Moiré on Ir(111) Phys. Rev. Lett. 2006, 97, 215501
    • (2006) Phys. Rev. Lett. , vol.97 , pp. 215501
    • Ndiaye, A.T.1    Bleikamp, S.2    Feibelman, P.J.3    Michely, T.4
  • 15
    • 65149099903 scopus 로고    scopus 로고
    • Graphene on Metal Surfaces
    • Wintterlin, J.; Bocquet, M. L. Graphene on Metal Surfaces Surf. Sci. 2009, 603, 1841-1852
    • (2009) Surf. Sci. , vol.603 , pp. 1841-1852
    • Wintterlin, J.1    Bocquet, M.L.2
  • 16
    • 42549089580 scopus 로고    scopus 로고
    • Epitaxial graphene on ruthenium
    • DOI 10.1038/nmat2166, PII NMAT2166
    • Sutter, P. W.; Flege, J.-I.; Sutter, E. A. Epitaxial Graphene on Ruthenium Nat. Mater. 2008, 7, 406-411 (Pubitemid 351585230)
    • (2008) Nature Materials , vol.7 , Issue.5 , pp. 406-411
    • Sutter, P.W.1    Flege, J.-I.2    Sutter, E.A.3
  • 17
    • 40449136109 scopus 로고    scopus 로고
    • Structural coherency of graphene on Ir(111)
    • DOI 10.1021/nl0728874
    • Coraux, J.; NDiaye, A. T.; Busse, C.; Michely, T. Structural Coherency of Graphene on Ir(111) Nano Lett. 2008, 8, 565-570 (Pubitemid 351346018)
    • (2008) Nano Letters , vol.8 , Issue.2 , pp. 565-570
    • Coraux, J.1    N'Diaye, A.T.2    Busse, C.3    Michely, T.4
  • 20
    • 64749101023 scopus 로고    scopus 로고
    • Kinetics and Thermodynamics of Carbon Segregation and Graphene Growth on Ru(0001)
    • McCarty, K. F.; Feibelman, P. J.; Loginova, E.; Bartelt, N. C. Kinetics and Thermodynamics of Carbon Segregation and Graphene Growth on Ru(0001) Carbon 2009, 47, 1806-1813
    • (2009) Carbon , vol.47 , pp. 1806-1813
    • McCarty, K.F.1    Feibelman, P.J.2    Loginova, E.3    Bartelt, N.C.4
  • 21
    • 0015414853 scopus 로고
    • Solubility of Carbon in Rhodium, Ruthenium, Iridium and Rhenium
    • Arnoult, W. J.; McLellan, R. B. Solubility of Carbon in Rhodium, Ruthenium, Iridium and Rhenium Scripta Metall. Mater. 1972, 6, 1013-1018
    • (1972) Scripta Metall. Mater. , vol.6 , pp. 1013-1018
    • Arnoult, W.J.1    McLellan, R.B.2
  • 25
    • 0014805603 scopus 로고
    • A Study of Ru(0001) and Rh(111) Surfaces Using LEED and Auger Electron Spectroscopy
    • Grant, J. T.; Haas, T. W. A Study of Ru(0001) and Rh(111) Surfaces Using LEED and Auger Electron Spectroscopy Surf. Sci. 1970, 21, 76-85
    • (1970) Surf. Sci. , vol.21 , pp. 76-85
    • Grant, J.T.1    Haas, T.W.2
  • 26
    • 0001191147 scopus 로고
    • Carbon on Transition Metal Surfaces
    • Tontegode, A. Y. Carbon on Transition Metal Surfaces Prog. Surf. Sci. 1991, 38, 201-429
    • (1991) Prog. Surf. Sci. , vol.38 , pp. 201-429
    • Tontegode, A.Y.1
  • 28
    • 77951960643 scopus 로고    scopus 로고
    • Dynamic Observation of Layer-by-Layer Growth and Removal of Graphene on Ru(0001)
    • Cui, Y.; Fu, Q.; Bao, X. Dynamic Observation of Layer-by-Layer Growth and Removal of Graphene on Ru(0001) Phys. Chem. Chem. Phys. 2010, 12, 5053-5057
    • (2010) Phys. Chem. Chem. Phys. , vol.12 , pp. 5053-5057
    • Cui, Y.1    Fu, Q.2    Bao, X.3
  • 30
    • 79961095208 scopus 로고    scopus 로고
    • In-Plane Orientation Effects on the Electronic Structure, Stability and Raman Scattering of Monolayer Graphene on Ir(111)
    • not supplied
    • Starodub, E.; Bostwick, A.; Moreschini, L.; Nie, S.; El Gabaly, F.; McCarty, K. F.; Rotenberg, E. In-Plane Orientation Effects on the Electronic Structure, Stability and Raman Scattering of Monolayer Graphene on Ir(111). Phys. Rev. B 2010, not supplied.
    • (2010) Phys. Rev. B
    • Starodub, E.1    Bostwick, A.2    Moreschini, L.3    Nie, S.4    El Gabaly, F.5    McCarty, K.F.6    Rotenberg, E.7
  • 31
    • 70349685099 scopus 로고    scopus 로고
    • Graphene Growth on Polycrystalline Ru Thin Films
    • Sutter, E.; Albrecht, P.; Sutter, P. Graphene Growth on Polycrystalline Ru Thin Films Appl. Phys. Lett. 2009, 95, 133109
    • (2009) Appl. Phys. Lett. , vol.95 , pp. 133109
    • Sutter, E.1    Albrecht, P.2    Sutter, P.3
  • 32
    • 79952960418 scopus 로고    scopus 로고
    • We have confirmed this expectation by analyzing LEED from the simpler system of multilayer graphene on Ru(0001), where all layers have R0-type alignment (see ref 16). Except for small, discrete energy ranges, we find that with increasing energy the first-order Ru spots become increasingly intense relative to the first-order graphene spots for both single-layer and bilayer graphene. Around 200 eV, the first-order Ru spots are generally more intense than the graphene spots
    • We have confirmed this expectation by analyzing LEED from the simpler system of multilayer graphene on Ru(0001), where all layers have R0-type alignment (see ref 16). Except for small, discrete energy ranges, we find that with increasing energy the first-order Ru spots become increasingly intense relative to the first-order graphene spots for both single-layer and bilayer graphene. Around 200 eV, the first-order Ru spots are generally more intense than the graphene spots.
  • 34
    • 0004778803 scopus 로고
    • 12) on (111) and Stepped 6(111) × (100) Iridium Crystal-Surfaces-Comparison with Platinum
    • 12) on (111) and Stepped 6(111) × (100) Iridium Crystal-Surfaces-Comparison with Platinum Surf. Sci. 1976, 59, 155-176
    • (1976) Surf. Sci. , vol.59 , pp. 155-176
    • Nieuwenhuys, B.E.1    Hagen, D.I.2    Rovida, G.3    Somorjai, G.A.4
  • 35
    • 0004242075 scopus 로고
    • A reason the moiré periodicity is so strong around the R22 features could be that the height corrugations of the R0 moiré cell are imprinted in the overlying R22 layer. Multiple diffraction could also play a role, although strong sequential diffraction from three layers (R0, R22 and Ir) is needed to explain the rosette features. See:;;; Springer Verlag: Berlin, Heidelberg,; pp - 84. The same observations hold for R0/R26/Ir and R26/R0/Ir in Figure 4
    • A reason the moiré periodicity is so strong around the R22 features could be that the height corrugations of the R0 moiré cell are imprinted in the overlying R22 layer. Multiple diffraction could also play a role, although strong sequential diffraction from three layers (R0, R22 and Ir) is needed to explain the rosette features. See: Van Hove, M. A.; Weinberg, W. H.; Chan, C.-M. Low-Energy Electron Diffraction Experiment, Theory and Surface Structure Determination; Springer Verlag: Berlin, Heidelberg, 1986; pp 82 - 84. The same observations hold for R0/R26/Ir and R26/R0/Ir in Figure 4.
    • (1986) Low-Energy Electron Diffraction Experiment, Theory and Surface Structure Determination , pp. 82
    • Van Hove, M.A.1    Weinberg, W.H.2    Chan, C.-M.3
  • 36
    • 79952927942 scopus 로고    scopus 로고
    • We also found examples in growth from segregation where the buried, second layer grew across rotational boundaries in the top layer without altering its orientation with respect to the substrate. Figure S3 provides an example where R0 nucleated under a R30 layer and grew across a rotational boundary
    • We also found examples in growth from segregation where the buried, second layer grew across rotational boundaries in the top layer without altering its orientation with respect to the substrate. Figure S3 provides an example where R0 nucleated under a R30 layer and grew across a rotational boundary.
  • 38
    • 79952947336 scopus 로고    scopus 로고
    • Other orientations can result from the second layer growing across rotational boundaries in the first layer, however, as shown in Figure 4
    • Other orientations can result from the second layer growing across rotational boundaries in the first layer, however, as shown in Figure 4.
  • 39
    • 78650111105 scopus 로고    scopus 로고
    • Graphene on the Ir(111) Surface: From van der Waals to Strong Bonding
    • Brako, R.; Ŝok?ević, D.; Lazić, P.; Atodiresei, N. Graphene on the Ir(111) Surface: From van der Waals to Strong Bonding New J. Phys. 2010, 12, 113016
    • (2010) New J. Phys. , vol.12 , pp. 113016
    • Brako, R.1    Ŝokević, D.2    Lazić, P.3    Atodiresei, N.4
  • 40
    • 77952081602 scopus 로고    scopus 로고
    • Contrasting Behavior of Carbon Nucleation in the Initial Stages of Graphene Epitaxial Growth on Stepped Metal Surfaces
    • Chen, H.; Zhu, W. G.; Zhang, Z. Y. Contrasting Behavior of Carbon Nucleation in the Initial Stages of Graphene Epitaxial Growth on Stepped Metal Surfaces Phys. Rev. Lett. 2010, 104, 186101
    • (2010) Phys. Rev. Lett. , vol.104 , pp. 186101
    • Chen, H.1    Zhu, W.G.2    Zhang, Z.Y.3
  • 41
    • 77954692376 scopus 로고    scopus 로고
    • Graphene on Pt(111): Growth and Substrate Interaction
    • Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt(111): Growth and Substrate Interaction Phys. Rev. B 2009, 80, 245411
    • (2009) Phys. Rev. B , vol.80 , pp. 245411
    • Sutter, P.1    Sadowski, J.T.2    Sutter, E.3
  • 44
    • 79952958463 scopus 로고    scopus 로고
    • Rotational alignment ensures that in reciprocal space the electronic bands are aligned and hence able to interact (see ref 8). In our LEEM analysis, we always find that the second layer under an R0 top sheet also had R0 orientation, a stacking that produces two π-bands. See Figure S1 of Supporting Information
    • Rotational alignment ensures that in reciprocal space the electronic bands are aligned and hence able to interact (see ref 8). In our LEEM analysis, we always find that the second layer under an R0 top sheet also had R0 orientation, a stacking that produces two π-bands. See Figure S1 of Supporting Information.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.