-
1
-
-
7444220645
-
-
SCIEAS 0036-8075 10.1126/science.1102896
-
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science SCIEAS 0036-8075 10.1126/science.1102896 306, 666 (2004).
-
(2004)
Science
, vol.306
, pp. 666
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
2
-
-
27744534165
-
-
NATUAS 0028-0836 10.1038/nature04233
-
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) NATUAS 0028-0836 10.1038/nature04233 438, 197 (2005).
-
(2005)
Nature (London)
, vol.438
, pp. 197
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Katsnelson, M.I.5
Grigorieva, I.V.6
Dubonos, S.V.7
Firsov, A.A.8
-
3
-
-
27744475163
-
-
NATUAS 0028-0836 10.1038/nature04235
-
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London) NATUAS 0028-0836 10.1038/nature04235 438, 201 (2005).
-
(2005)
Nature (London)
, vol.438
, pp. 201
-
-
Zhang, Y.1
Tan, Y.W.2
Stormer, H.L.3
Kim, P.4
-
4
-
-
33645752733
-
-
ZZZZZZ 1745-2473
-
K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal'ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, Nat. Phys. ZZZZZZ 1745-2473 2, 177 (2006).
-
(2006)
Nat. Phys.
, vol.2
, pp. 177
-
-
Novoselov, K.S.1
McCann, E.2
Morozov, S.V.3
Fal'Ko, V.I.4
Katsnelson, M.I.5
Zeitler, U.6
Jiang, D.7
Schedin, F.8
Geim, A.K.9
-
5
-
-
33747626322
-
-
SCIEAS 0036-8075 10.1126/science.1130681
-
T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science SCIEAS 0036-8075 10.1126/science.1130681 313, 951 (2006).
-
(2006)
Science
, vol.313
, pp. 951
-
-
Ohta, T.1
Bostwick, A.2
Seyller, T.3
Horn, K.4
Rotenberg, E.5
-
6
-
-
34247635186
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.98.176805
-
R. V. Gorbachev, F. V. Tikhonenko, A. S. Mayorov, D. W. Horsell, and A. K. Savchenko, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.176805 98, 176805 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 176805
-
-
Gorbachev, R.V.1
Tikhonenko, F.V.2
Mayorov, A.S.3
Horsell, D.W.4
Savchenko, A.K.5
-
7
-
-
36249007086
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.99.216802
-
E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.216802 99, 216802 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 216802
-
-
Castro, E.V.1
Novoselov, K.S.2
Morozov, S.V.3
Peres, N.M.R.4
Lopes Dos Santos, J.M.B.5
Nilsson, J.6
Guinea, F.7
Geim, A.K.8
Castro Neto, A.H.9
-
8
-
-
38549085884
-
-
NMAACR 1476-1122 10.1038/nmat2082
-
J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, Nat. Mater. NMAACR 1476-1122 10.1038/nmat2082 7, 151 (2008).
-
(2008)
Nat. Mater.
, vol.7
, pp. 151
-
-
Oostinga, J.B.1
Heersche, H.B.2
Liu, X.3
Morpurgo, A.F.4
Vandersypen, L.M.K.5
-
9
-
-
36149007340
-
-
PHRVAO 0031-899X 10.1103/PhysRev.71.622
-
P. R. Wallace, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.71.622 71, 622 (1947).
-
(1947)
Phys. Rev.
, vol.71
, pp. 622
-
-
Wallace, P.R.1
-
10
-
-
36149021290
-
-
PHRVAO 0031-899X 10.1103/PhysRev.109.272
-
J. C. Slonczewski and P. R. Weiss, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.109.272 109, 272 (1958).
-
(1958)
Phys. Rev.
, vol.109
, pp. 272
-
-
Slonczewski, J.C.1
Weiss, P.R.2
-
11
-
-
36149014020
-
-
PHRVAO 0031-899X 10.1103/PhysRev.108.612
-
J. W. McClure, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.108.612 108, 612 (1957)
-
(1957)
Phys. Rev.
, vol.108
, pp. 612
-
-
McClure, J.W.1
-
12
-
-
36149006551
-
-
PHRVAO 0031-899X 10.1103/PhysRev.119.606
-
J. W. McClure, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.119.606 119, 606 (1960).
-
(1960)
Phys. Rev.
, vol.119
, pp. 606
-
-
McClure, J.W.1
-
13
-
-
35949016807
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.29.1685
-
D. P. DiVincenzo and E. J. Mele, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.29.1685 29, 1685 (1984).
-
(1984)
Phys. Rev. B
, vol.29
, pp. 1685
-
-
Divincenzo, D.P.1
Mele, E.J.2
-
14
-
-
3442881546
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.53.2449
-
G. W. Semenoff, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.53. 2449 53, 2449 (1984).
-
(1984)
Phys. Rev. Lett.
, vol.53
, pp. 2449
-
-
Semenoff, G.W.1
-
16
-
-
33845998961
-
-
ZZZZZZ 1745-2473
-
A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Nat. Phys. ZZZZZZ 1745-2473 3, 36 (2007).
-
(2007)
Nat. Phys.
, vol.3
, pp. 36
-
-
Bostwick, A.1
Ohta, T.2
Seyller, T.3
Horn, K.4
Rotenberg, E.5
-
17
-
-
33748335439
-
-
ZZZZZZ 1745-2473
-
S. Y. Zhou, G.-H. Gweon, J. Graf, A. V. Fedorov, C. D. Spataru, R. D. Diehl, Y. Kopelevich, D.-H. Lee, S. G. Louie, and A. Lanzara, Nat. Phys. ZZZZZZ 1745-2473 2, 595 (2006).
-
(2006)
Nat. Phys.
, vol.2
, pp. 595
-
-
Zhou, S.Y.1
Gweon, G.-H.2
Graf, J.3
Fedorov, A.V.4
Spataru, C.D.5
Diehl, R.D.6
Kopelevich, Y.7
Lee, D.-H.8
Louie, S.G.9
Lanzara, A.10
-
18
-
-
34249901916
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.98.206802
-
T. Ohta, A. Bostwick, J. L. McChesney, T. Seyller, K. Horn, and E. Rotenberg, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.206802 98, 206802 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 206802
-
-
Ohta, T.1
Bostwick, A.2
McChesney, J.L.3
Seyller, T.4
Horn, K.5
Rotenberg, E.6
-
19
-
-
35748982143
-
-
NJOPFM 1367-2630 10.1088/1367-2630/9/10/385
-
A. Bostwick, T. Ohta, J. L. McChesney, K. V. Emtsev, T. Seyller, K. Horn, and E. Rotenberg, New J. Phys. NJOPFM 1367-2630 10.1088/1367-2630/9/10/385 9, 385 (2007).
-
(2007)
New J. Phys.
, vol.9
, pp. 385
-
-
Bostwick, A.1
Ohta, T.2
McChesney, J.L.3
Emtsev, K.V.4
Seyller, T.5
Horn, K.6
Rotenberg, E.7
-
20
-
-
34848838046
-
-
NMAACR 1476-1122 10.1038/nmat2003
-
S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Nat. Mater. NMAACR 1476-1122 10.1038/nmat2003 6, 770 (2007).
-
(2007)
Nat. Mater.
, vol.6
, pp. 770
-
-
Zhou, S.Y.1
Gweon, G.-H.2
Fedorov, A.V.3
First, P.N.4
De Heer, W.A.5
Lee, D.-H.6
Guinea, F.7
Castro Neto, A.H.8
Lanzara, A.9
-
21
-
-
34249883881
-
-
SSCOA4 0038-1098 10.1016/j.ssc.2007.04.034
-
A. Bostwick, T. Ohta, J. L. McChesney, T. Seyller, K. Horn, and E. Rotenberg, Solid State Commun. SSCOA4 0038-1098 10.1016/j.ssc.2007.04.034 143, 63 (2007).
-
(2007)
Solid State Commun.
, vol.143
, pp. 63
-
-
Bostwick, A.1
Ohta, T.2
McChesney, J.L.3
Seyller, T.4
Horn, K.5
Rotenberg, E.6
-
22
-
-
34848839173
-
-
ZZZZZZ 1951-6355
-
A. Bostwick, T. Ohta, J. L. McChesney, T. Seyller, K. Horn, and E. Rotenberg, Eur. Phys. J. Spec. Top. ZZZZZZ 1951-6355 148, 5 (2007).
-
(2007)
Eur. Phys. J. Spec. Top.
, vol.148
, pp. 5
-
-
Bostwick, A.1
Ohta, T.2
McChesney, J.L.3
Seyller, T.4
Horn, K.5
Rotenberg, E.6
-
23
-
-
34548250859
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.99.086804
-
C.-H. Park, F. Giustino, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.086804 99, 086804 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 086804
-
-
Park, C.-H.1
Giustino, F.2
Cohen, M.L.3
Louie, S.G.4
-
24
-
-
36049027406
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.76.205411
-
M. Calandra and F. Mauri, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.76.205411 76, 205411 (2007).
-
(2007)
Phys. Rev. B
, vol.76
, pp. 205411
-
-
Calandra, M.1
Mauri, F.2
-
25
-
-
36849071047
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.99.236802
-
W.-K. Tse and S. Das Sarma, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.236802 99, 236802 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 236802
-
-
Tse, W.-K.1
Das Sarma, S.2
-
26
-
-
40949151918
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.77.081411
-
M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, and A. H. MacDonald, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.77.081411 77, 081411 (R) (2008).
-
(2008)
Phys. Rev. B
, vol.77
, pp. 081411
-
-
Polini, M.1
Asgari, R.2
Borghi, G.3
Barlas, Y.4
Pereg-Barnea, T.5
MacDonald, A.H.6
-
27
-
-
33644674176
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.086805
-
E. McCann and V. I. Fal'ko, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.086805 96, 086805 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 086805
-
-
McCann, E.1
Fal'Ko, V.I.2
-
29
-
-
33750162077
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.74.161403
-
E. McCann, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.74.161403 74, 161403 (R) (2006).
-
(2006)
Phys. Rev. B
, vol.74
, pp. 161403
-
-
McCann, E.1
-
30
-
-
34247522914
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.75.155115
-
H. Min, B. R. Sahu, S. K. Banerjee, and A. H. MacDonald, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.75.155115 75, 155115 (2007).
-
(2007)
Phys. Rev. B
, vol.75
, pp. 155115
-
-
Min, H.1
Sahu, B.R.2
Banerjee, S.K.3
MacDonald, A.H.4
-
31
-
-
33947111327
-
-
SSCOA4 0038-1098 10.1016/j.ssc.2007.02.013
-
M. Aoki and H. Amawashi, Solid State Commun. SSCOA4 0038-1098 10.1016/j.ssc.2007.02.013 142, 123 (2007).
-
(2007)
Solid State Commun.
, vol.142
, pp. 123
-
-
Aoki, M.1
Amawashi, H.2
-
36
-
-
34648825700
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.99.126805
-
F. Varchon, R. Feng, J. Hass, X. Li, B. N. Nguyen, C. Naud, P. Mallet, J.-Y. Veuillen, C. Berger, E. H. Conrad, and L. Magaud, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.126805 99, 126805 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 126805
-
-
Varchon, F.1
Feng, R.2
Hass, J.3
Li, X.4
Nguyen, B.N.5
Naud, C.6
Mallet, P.7
Veuillen, J.-Y.8
Berger, C.9
Conrad, E.H.10
Magaud, L.11
-
37
-
-
0000152377
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.51.13614
-
E. L. Shirley, L. J. Terminello, A. Santoni, and F. J. Himpsel, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.51.13614 51, 13614 (1995).
-
(1995)
Phys. Rev. B
, vol.51
, pp. 13614
-
-
Shirley, E.L.1
Terminello, L.J.2
Santoni, A.3
Himpsel, F.J.4
-
38
-
-
0020548406
-
-
ADPHAH 0001-8732 10.1080/00018738300101521
-
F. J. Himpsel, Adv. Phys. ADPHAH 0001-8732 10.1080/00018738300101521 32, 1 (1983).
-
(1983)
Adv. Phys.
, vol.32
, pp. 1
-
-
Himpsel, F.J.1
-
39
-
-
43049116240
-
-
We define the charge-neutrality point as the position of the Fermi level in nominally undoped graphene and we set this position as that of zero energy. In monolayer graphene, this is often called the Dirac point.
-
We define the charge-neutrality point as the position of the Fermi level in nominally undoped graphene and we set this position as that of zero energy. In monolayer graphene, this is often called the Dirac point.
-
-
-
-
41
-
-
0036267495
-
-
ADPHAH 0001-8732 10.1080/00018730110113644
-
M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. ADPHAH 0001-8732 10.1080/00018730110113644 51, 1 (2002).
-
(2002)
Adv. Phys.
, vol.51
, pp. 1
-
-
Dresselhaus, M.S.1
Dresselhaus, G.2
-
42
-
-
43049135268
-
-
The tight-binding parameters are defined as γ0 =- ΦA1 | H | ΦB1 =- ΦA2 | H | ΦB2 , where ΦA1 is an atomic orbital located on A1 site, γ1 =+ ΦA2 | H | ΦB1 , γ3 =+ ΦA1 | H | ΦB2 , and γ4 =+ ΦA1 | H | ΦA2 =+ ΦB1 | H | ΦB2 . These definitions agree with those of the Slonczewski-Weiss-McClure model of graphite (Refs.). Note that the parameters describing interlayer hopping (γ1, γ3, and γ4) enter the Hamiltonian of the Slonczewski-Weiss-McClure model with an additional factor of 2 that takes into account the greater number of neighboring graphene planes in bulk graphite as compared to bilayer graphene.
-
The tight-binding parameters are defined as γ0 =- ΦA1 | H | ΦB1 =- ΦA2 | H | ΦB2 , where ΦA1 is an atomic orbital located on A1 site, γ1 =+ ΦA2 | H | ΦB1 , γ3 =+ ΦA1 | H | ΦB2 , and γ4 =+ ΦA1 | H | ΦA2 =+ ΦB1 | H | ΦB2 . These definitions agree with those of the Slonczewski-Weiss-McClure model of graphite (Refs.). Note that the parameters describing interlayer hopping (γ1, γ3, and γ4) enter the Hamiltonian of the Slonczewski-Weiss-McClure model with an additional factor of 2 that takes into account the greater number of neighboring graphene planes in bulk graphite as compared to bilayer graphene.
-
-
-
-
43
-
-
43049087865
-
-
In the absence of trigonal warping μ=0, the intensity [Eq. 7] in the presence of asymmetry Δ at low energy in monolayer graphene simplifies as I∼ | Φp | 2 { 1+ [1- Δ2 / (4 q2)] 1/2 cos (2 θ1) } δ (Ep +A- q -ω) δq, p - K± -G.
-
In the absence of trigonal warping μ=0, the intensity [Eq. 7] in the presence of asymmetry Δ at low energy in monolayer graphene simplifies as I∼ | Φp | 2 { 1+ [1- Δ2 / (4 q2)] 1/2 cos (2 θ1) } δ (Ep +A- q -ω) δq, p - K± -G.
-
-
-
-
44
-
-
33746764451
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.74.075404
-
B. Partoens and F. M. Peeters, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.74.075404 74, 075404 (2006).
-
(2006)
Phys. Rev. B
, vol.74
, pp. 075404
-
-
Partoens, B.1
Peeters, F.M.2
-
46
-
-
35848939399
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.76.201401
-
L. M. Malard, J. Nilsson, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, A. H. Castro Neto, and M. A. Pimenta, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.76.201401 76, 201401 (R) (2007).
-
(2007)
Phys. Rev. B
, vol.76
, pp. 201401
-
-
Malard, L.M.1
Nilsson, J.2
Elias, D.C.3
Brant, J.C.4
Plentz, F.5
Alves, E.S.6
Castro Neto, A.H.7
Pimenta, M.A.8
-
48
-
-
43049110692
-
-
For emission from the conduction band at very low energy (top left side of Fig. 5), the interference pattern has two peaks [roughly similar to cos2 (φ)], but one of the peaks has about three times stronger maximum intensity than the others. The reason is that corrections due to the presence of dimer orbitals are small (in parameter q /vq) but finite (this band has α=+1). Their influence may be estimated by considering the function g (φ) =1+cos (2φ) +4 (q /vq) cos (φ) +2 (q /vq) 2 [Eq. 10]. Comparing the maxima of the two peaks, at angles φ=0 and φ=π, gives g (0) /g (π) = [(1+ q /vq) / (1- q /vq)] 2. For the energy considered on the top left side of Fig. 5, where q ≈ 2 v2 q2 / γ1, then q /vq≈ (q / γ1) 1/2 ≈0.29. Thus, although this is "small," it yields g (0) /g (π) ≈3.34.
-
For emission from the conduction band at very low energy (top left side of Fig. 5), the interference pattern has two peaks [roughly similar to cos2 (φ)], but one of the peaks has about three times stronger maximum intensity than the others. The reason is that corrections due to the presence of dimer orbitals are small (in parameter q /vq) but finite (this band has α=+1). Their influence may be estimated by considering the function g (φ) =1+cos (2φ) +4 (q /vq) cos (φ) +2 (q /vq) 2 [Eq. 10]. Comparing the maxima of the two peaks, at angles φ=0 and φ=π, gives g (0) /g (π) = [(1+ q /vq) / (1- q /vq)] 2. For the energy considered on the top left side of Fig. 5, where q ≈ 2 v2 q2 / γ1, then q /vq≈ (q / γ1) 1/2 ≈0.29. Thus, although this is "small," it yields g (0) /g (π) ≈3.34.
-
-
-
-
50
-
-
0016432028
-
-
SSCOA4 0038-1098 10.1016/0038-1098(75)90790-5
-
P. Lawaetz, Solid State Commun. SSCOA4 0038-1098 10.1016/0038-1098(75) 90790-5 16, 65 (1975).
-
(1975)
Solid State Commun.
, vol.16
, pp. 65
-
-
Lawaetz, P.1
-
51
-
-
43049139989
-
-
ARPES spectra as described in Secs. 3 3 corresponding to photons with low energies, such that pz d 1 (d is the interlayer spacing), are the same for both twin crystals. To apply the results of Sec. 3 to the B2-A1 twin, one would have to invert the signs of Δ and U. For higher photon energies, such that β= pz d is finite, the anisotropy maps in Fig. 9 of Sec. 3 should be reflected with respect to the horizontal axis.
-
ARPES spectra as described in Secs. 3 3 corresponding to photons with low energies, such that pz d 1 (d is the interlayer spacing), are the same for both twin crystals. To apply the results of Sec. 3 to the B2-A1 twin, one would have to invert the signs of Δ and U. For higher photon energies, such that β= pz d is finite, the anisotropy maps in Fig. 9 of Sec. 3 should be reflected with respect to the horizontal axis.
-
-
-
|