메뉴 건너뛰기




Volumn 68, Issue 4, 2011, Pages 361-384

Learning in the feed-forward random neural network: A critical review

Author keywords

ART; CART; Error functions; Evolutionary neural networks; Gradient descent; Learning; Multi layer perceptron; Multi objective optimization; Random neural network; SVM

Indexed keywords

ART; CART; ERROR FUNCTIONS; EVOLUTIONARY NEURAL NETWORK; GRADIENT DESCENT; LEARNING; MULTI LAYER PERCEPTRON; MULTI OBJECTIVE; RANDOM NEURAL NETWORK; SVM;

EID: 79952589387     PISSN: 01665316     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.peva.2010.07.006     Document Type: Article
Times cited : (38)

References (129)
  • 1
    • 0001373628 scopus 로고
    • Random neural networks with negative and positive signals and product form solution
    • E. Gelenbe Random neural networks with negative and positive signals and product form solution Neural Computation 1 1989 502 510
    • (1989) Neural Computation , vol.1 , pp. 502-510
    • Gelenbe, E.1
  • 3
    • 0000145931 scopus 로고
    • Stability of the random neural network model
    • E. Gelenbe Stability of the random neural network model Neural Computation 2 1990 239 247
    • (1990) Neural Computation , vol.2 , pp. 239-247
    • Gelenbe, E.1
  • 4
    • 0000428263 scopus 로고
    • Learning in the recurrent neural network
    • E. Gelenbe Learning in the recurrent neural network Neural Computation 5 1993 154 164
    • (1993) Neural Computation , vol.5 , pp. 154-164
    • Gelenbe, E.1
  • 8
    • 77649317294 scopus 로고    scopus 로고
    • The random neural network: A survey
    • S. Timotheou The random neural network: a survey Computer Journal 53 3 2010 251 267
    • (2010) Computer Journal , vol.53 , Issue.3 , pp. 251-267
    • Timotheou, S.1
  • 9
    • 0035480143 scopus 로고    scopus 로고
    • Design and performance of cognitive packet networks
    • DOI 10.1016/S0166-5316(01)00042-6, PII S0166531601000426
    • E. Gelenbe, R. Lent, and Z. Xu Design and performance of cognitive packet networks Performance Evaluation 46 2001 155 176 (Pubitemid 32768295)
    • (2001) Performance Evaluation , vol.46 , Issue.2-3 , pp. 155-176
    • Gelenbe, E.1    Lent, R.2    Xu, Z.3
  • 10
  • 12
    • 0030270952 scopus 로고    scopus 로고
    • Neural network methods for volumetric magnetic resonance imaging of the human brain
    • PII S0018921996071733
    • E. Gelenbe, T. Feng, and K.R.R. Krishnan Neural network methods for volumetric magnetic resonance imaging of the human brain Proceedings of IEEE 84 1996 1488 1496 (Pubitemid 126752600)
    • (1996) Proceedings of the IEEE , vol.84 , Issue.10 , pp. 1488-1496
    • Gelenbe, E.1    Feng, Y.2    Ranga R Krishnan, K.3
  • 15
  • 17
    • 77953781779 scopus 로고    scopus 로고
    • Laser intensity vehicle classification system based on random neural network
    • Kennesaw, Georgia, USA
    • K. Hussain, G.S. Moussa, Laser intensity vehicle classification system based on random neural network, in: Proceedings of 43rd Annual Southeast Regional Conference, Kennesaw, Georgia, USA, 2005, pp. 3135.
    • (2005) Proceedings of 43rd Annual Southeast Regional Conference , pp. 31-35
    • Hussain, K.1    Moussa, G.S.2
  • 18
    • 3142656045 scopus 로고    scopus 로고
    • Wafer surface reconstruction from top-down scanning electron microscope images
    • E. Gelenbe, and T. Kocak Wafer surface reconstruction from top-down scanning electron microscope images Microelectronic Engineering 75 2004 216 233
    • (2004) Microelectronic Engineering , vol.75 , pp. 216-233
    • Gelenbe, E.1    Kocak, T.2
  • 19
    • 0033561945 scopus 로고    scopus 로고
    • Random neural networks with multiple classes of signals
    • E. Gelenbe, and J.M. Fourneau Random neural networks with multiple classes of signals Neural Computation 11 1999 953 963
    • (1999) Neural Computation , vol.11 , pp. 953-963
    • Gelenbe, E.1    Fourneau, J.M.2
  • 20
    • 0036859210 scopus 로고    scopus 로고
    • Learning in the multiple class random neural network
    • DOI 10.1109/TNN.2002.804228
    • E. Gelenbe, and K. Hussain Learning in the multiple class random neural network IEEE Transactions on Neural Networks 13 2002 1257 1267 (Pubitemid 35428517)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.6 , pp. 1257-1267
    • Gelenbe, E.1    Hussain, K.F.2
  • 23
    • 55449106994 scopus 로고    scopus 로고
    • Synchronized intercations in spiked neuronal models
    • E. Gelenbe, and S. Timotheou Synchronized intercations in spiked neuronal models The Computer Journal 51 6 2008 723 730
    • (2008) The Computer Journal , vol.51 , Issue.6 , pp. 723-730
    • Gelenbe, E.1    Timotheou, S.2
  • 24
    • 51349159817 scopus 로고    scopus 로고
    • Random neural networks with synchronized interactions
    • E. Gelenbe, and S. Timotheou Random neural networks with synchronized interactions Neural Computation 20 2008 2308 2324
    • (2008) Neural Computation , vol.20 , pp. 2308-2324
    • Gelenbe, E.1    Timotheou, S.2
  • 25
    • 58849163716 scopus 로고    scopus 로고
    • Nonegative least squares learning for the random neural network
    • Prague, Czech Republic
    • S. Timotheou, Nonegative least squares learning for the random neural network, in: 18th International Conference on Artificial Neural Networks, Prague, Czech Republic, 2008, pp. 195204.
    • (2008) 18th International Conference on Artificial Neural Networks , pp. 195-204
    • Timotheou, S.1
  • 26
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • R.A. Jacobs Increased rates of convergence through learning rate adaptation Neural Networks 1 1988 151 160
    • (1988) Neural Networks , vol.1 , pp. 151-160
    • Jacobs, R.A.1
  • 28
    • 0028543366 scopus 로고
    • Training feed-forward neural networks with the marquardt algorithm
    • M.T. Hagan, and M. Menhaj Training feed-forward neural networks with the marquardt algorithm IEEE Transactions on Neural Networks 5 6 1994 989 993
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 31
    • 0027850130 scopus 로고
    • Pattern completion with the random neural network using the RPROP learning algorithm
    • LeTouquet, France
    • C. Hubert, Pattern completion with the random neural network using the RPROP learning algorithm, in: Proceedings of International Conference on Man and Cybernetics, LeTouquet, France, vol. 2, 1993, pp. 613617.
    • (1993) Proceedings of International Conference on Man and Cybernetics , vol.2 , pp. 613-617
    • Hubert, C.1
  • 32
    • 22444454216 scopus 로고    scopus 로고
    • Resolution of pattern recognition problems using a hybrid genetic/random neural network learning algorithm
    • J. Aguilar, and A. Colmenares Resolution of pattern recognition problems using a hybrid genetic/random neural network learning algorithm Pattern Analysis and Applications 1 1998 52 61 (Pubitemid 128697163)
    • (1998) Pattern Analysis and Applications , vol.1 , Issue.1 , pp. 52-61
    • Aguilar, J.1    Colmenares, A.2
  • 34
    • 0142000477 scopus 로고    scopus 로고
    • Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces
    • R. Stork, and K. Price Differential evolution a simple and efficient heuristic for global optimization over continuous spaces Journal of Global Optimization 11 1997 341 359 (Pubitemid 127502202)
    • (1997) Journal of Global Optimization , vol.11 , Issue.4 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 39
    • 0042526087 scopus 로고    scopus 로고
    • Particle swarm optimization to solve the economic dispatch considering the generator constraints
    • G. Zee-Lee Particle swarm optimization to solve the economic dispatch considering the generator constraints IEEE Transactions on Power Systems 18 2003 1187 1195
    • (2003) IEEE Transactions on Power Systems , vol.18 , pp. 1187-1195
    • Zee-Lee, G.1
  • 41
    • 0036749163 scopus 로고    scopus 로고
    • Optimal design of power-system stabilizers using particle swarm optimization
    • DOI 10.1109/TEC.2002.801992, PII 1011092002801992
    • M.A. Abido Optimal design of power-system stabilizers using particle swarm optimization IEEE Transactions on Energy Conversion 17 2002 406 413 (Pubitemid 35151678)
    • (2002) IEEE Transactions on Energy Conversion , vol.17 , Issue.3 , pp. 406-413
    • Abido, M.A.1
  • 43
    • 1842535329 scopus 로고    scopus 로고
    • A hybrid genetic algorithm and particle swarm optimization for recurrent neural network design
    • C.F. Juang A hybrid genetic algorithm and particle swarm optimization for recurrent neural network design IEEE Transactions on Systems Man and Cybernetics 32 2004 997 1006
    • (2004) IEEE Transactions on Systems Man and Cybernetics , vol.32 , pp. 997-1006
    • Juang, C.F.1
  • 44
    • 12144252495 scopus 로고    scopus 로고
    • An improved PSO-based ANN with simulated annealing technique
    • DOI 10.1016/j.neucom.2004.07.002, PII S0925231204003364
    • Y. Da, and X.R. Ge An improved PSO-based ANN with simulated annealing technique Neurocomputing Letters 63 2005 527 533 (Pubitemid 40103877)
    • (2005) Neurocomputing , vol.63 , Issue.SPEC. ISS. , pp. 527-533
    • Da, Y.1    Xiurun, G.2
  • 46
    • 33646733849 scopus 로고    scopus 로고
    • Optimized particle swarm optimization (OPSO) and its application to artificial neural network training
    • M. Meissner, M. Schmuker, and G. Schneider Optimized particle swarm optimization (OPSO) and its application to artificial neural network training BMC Bioinformatics 7 125 2006
    • (2006) BMC Bioinformatics , vol.7 , Issue.125
    • Meissner, M.1    Schmuker, M.2    Schneider, G.3
  • 47
    • 0034439878 scopus 로고    scopus 로고
    • An ANN's evolved by a new evolutionary system and its application
    • C. Zhang, H. Shao, An ANN's evolved by a new evolutionary system and its application, in: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, vol. 4, 2000, pp. 35623563. (Pubitemid 32528212)
    • (2000) Proceedings of the IEEE Conference on Decision and Control , vol.4 , pp. 3562-3563
    • Zhang, C.1    Shao, H.2
  • 48
    • 32444439898 scopus 로고    scopus 로고
    • Comparison of genetic algorithm and particle swarm optimizer when evolving a recurrent neural network
    • Proceedings of the Genetic and Evolutionary Computation Conference GECCO, Chicago, IL
    • M. Settles, B. Rodebaugh, and T. Soule Comparison of genetic algorithm and particle swarm optimizer when evolving a recurrent neural network Proceedings of the Genetic and Evolutionary Computation Conference GECCO, Chicago, IL Lecture Notes in Computer Science vol. 2723 2003 151 152
    • (2003) Lecture Notes in Computer Science , vol.2723 , pp. 151-152
    • Settles, M.1    Rodebaugh, B.2    Soule, T.3
  • 49
    • 35548944900 scopus 로고    scopus 로고
    • An improved particle swarm optimization for evolving feedforward artificial neural networks
    • DOI 10.1007/s11063-007-9053-x
    • Y. Yu, L. Xi, and S. Wang An improved particle swarm optimization for evolving feed-forward artificial neural networks Neural Processing Letters 26 2007 217 231 (Pubitemid 350005976)
    • (2007) Neural Processing Letters , vol.26 , Issue.3 , pp. 217-231
    • Yu, J.1    Xi, L.2    Wang, S.3
  • 50
    • 71749096569 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks by multi-dimensional particle swarm optimization
    • S. Kiranyaz, I. Turker, A. Yildirim, and M. Gabbou Evolutionary artificial neural networks by multi-dimensional particle swarm optimization Neural Networks 22 2009 1448 1462
    • (2009) Neural Networks , vol.22 , pp. 1448-1462
    • Kiranyaz, S.1    Turker, I.2    Yildirim, A.3    Gabbou, M.4
  • 51
    • 0141542628 scopus 로고    scopus 로고
    • Speeding up back-propagation using multi-objective evolutionary algorithms
    • H.A. Abass Speeding up back-propagation using multi-objective evolutionary algorithms Neural Computation 15 2003 2705 2726
    • (2003) Neural Computation , vol.15 , pp. 2705-2726
    • Abass, H.A.1
  • 52
    • 0030270532 scopus 로고    scopus 로고
    • Low bit rate video compression with neural networks and temporal sub-sampling
    • C. Cramer, E. Gelenbe, and H. Bakircioglu Low bit rate video compression with neural networks and temporal sub-sampling Proceedings of the IEEE 84 10 1996 1529 1543
    • (1996) Proceedings of the IEEE , vol.84 , Issue.10 , pp. 1529-1543
    • Cramer, C.1    Gelenbe, E.2    Bakircioglu, H.3
  • 53
    • 0000080129 scopus 로고    scopus 로고
    • Traffic and video quality with adaptive neural compression
    • E. Gelenbe, C. Cramer, M. Sungur, and P. Gelenbe Traffic and video quality in adaptive neural compression Multimedia Systems 4 6 1996 357 369 (Pubitemid 126598437)
    • (1996) Multimedia Systems , vol.4 , Issue.6 , pp. 357-369
    • Gelenbe, E.1    Sungur, M.2    Cramer, C.3    Gelenbe, P.4
  • 55
    • 0033871374 scopus 로고    scopus 로고
    • Video quality and traffic QOS in learning-based subsampled and receiver interpolated video sequences
    • C.E. Cramer, and E. Gelenbe Video quality and traffic QOS in learning-based subsampled and receiver interpolated video sequences IEEE Journal on Selected Areas in Communications 18 2 2000 150 166
    • (2000) IEEE Journal on Selected Areas in Communications , vol.18 , Issue.2 , pp. 150-166
    • Cramer, C.E.1    Gelenbe, E.2
  • 56
    • 79952616060 scopus 로고    scopus 로고
    • Random Neural Network Recognition of Shaped Objects in Strong Clutter
    • Artificial Neural Networks - ICANN '97
    • H. Bakircioglu, E. Gelenbe, and L. Carin Random neural network recognition of shaped objects in strong clutter Proceedings of the 7th International Conference on Neural Networks Lecture Notes in Computer Science vol. 1327 1997 961 966 (Pubitemid 127140357)
    • (1997) Lecture Notes in Computer Science , Issue.1327 , pp. 961-966
    • Bakircioglu, H.1    Gelenbe, E.2    Carin, L.3
  • 57
    • 0038321653 scopus 로고    scopus 로고
    • Feature-based RNN target recognition
    • Aerosense 98 (Algorithms for Synthetic Aperture Radar Imagery, V)
    • H. Bakircioglu, E. Gelenbe, Feature-based RNN target recognition, in: SPIE Proceedings, Orlando, FL, in: Aerosense 98, vol. 3370, (Algorithms for Synthetic Aperture Radar Imagery, V), 1998, pp. 508518.
    • (1998) SPIE Proceedings, Orlando, FL , vol.3370 , pp. 508-518
    • Bakircioglu, H.1    Gelenbe, E.2
  • 60
    • 2342628532 scopus 로고    scopus 로고
    • Performance evaluation of real time speech through a packet network
    • S. Mohamed, G. Rubino, and M. Varela Performance evaluation of real time speech through a packet network Performance Evaluation 57 2004 141 161
    • (2004) Performance Evaluation , vol.57 , pp. 141-161
    • Mohamed, S.1    Rubino, G.2    Varela, M.3
  • 61
    • 33644919658 scopus 로고    scopus 로고
    • Controlling multimedia QoS in the future home network using the PSQA metric
    • DOI 10.1093/comjnl/bxh165
    • G. Rubino, M. Varela, and J. Bonnin Controlling multimedia QoS in the future home network using the PSQA metric Computer Journal 49 2006 137 155 (Pubitemid 43380654)
    • (2006) Computer Journal , vol.49 , Issue.2 , pp. 137-155
    • Rubino, G.1    Varela, M.2    Bonnin, J.-M.3
  • 64
    • 50249130274 scopus 로고    scopus 로고
    • A biologically inspired denial of service detector using the random neural network
    • MASS'07, Pisa, Italy IEEE Computer Society Washington, DC, USA
    • G. Loukas, and G. Oke A biologically inspired denial of service detector using the random neural network Proceeding of the 4th IEEE International Conference on Mobile Adhoc and Sensor Systems MASS'07, Pisa, Italy 2007 IEEE Computer Society Washington, DC, USA 1 7
    • (2007) Proceeding of the 4th IEEE International Conference on Mobile Adhoc and Sensor Systems , pp. 1-7
    • Loukas, G.1    Oke, G.2
  • 65
    • 50249125438 scopus 로고    scopus 로고
    • Detecting denial of service attacks with bayesian classifiers and the random neural network
    • London, UK
    • G. Oke, G. Loukas, E. Gelenbe, Detecting denial of service attacks with bayesian classifiers and the random neural network, in: Proceedings of Fuzz-IEEE, London, UK, 2007 pp. 19641969.
    • (2007) Proceedings of Fuzz-IEEE , pp. 1964-1969
    • Oke, G.1    Loukas, G.2    Gelenbe, E.3
  • 67
    • 35648969617 scopus 로고    scopus 로고
    • A denial of service detector based on maximum likelihood detection and the random neural network
    • DOI 10.1093/comjnl/bxm066
    • Gülay ke, and Georgios Loukas A denial of service detector based on maximum likelihood detection and the random neural network Computer Journal 50 6 2007 717 727 (Pubitemid 350031419)
    • (2007) Computer Journal , vol.50 , Issue.6 , pp. 717-727
    • Oke, G.1    Loukas, G.2
  • 68
    • 0000997490 scopus 로고    scopus 로고
    • Simulation with learning agents
    • PII S0018921901017406
    • E. Gelenbe, E. Seref, and Z. Xu Simulation with learning agents Proceedings of the IEEE 89 2001 148 157 (Pubitemid 33766568)
    • (2001) Proceedings of the IEEE , vol.89 , Issue.2 , pp. 148-157
    • Gelenbe, E.1    Seref, E.2    Zhiguang, X.U.3
  • 69
    • 0034675395 scopus 로고    scopus 로고
    • Reinforcement learning with internal expectation for the random neural network
    • U. Halici Reinforcement learning with internal expectation for the random neural network European Journal of Operations Research 126 2000 288 307
    • (2000) European Journal of Operations Research , vol.126 , pp. 288-307
    • Halici, U.1
  • 71
    • 67650079730 scopus 로고    scopus 로고
    • Steps toward self-aware networks
    • E. Gelenbe Steps toward self-aware networks Communications of the ACM 52 7 2009 66 75
    • (2009) Communications of the ACM , vol.52 , Issue.7 , pp. 66-75
    • Gelenbe, E.1
  • 72
    • 77649321712 scopus 로고    scopus 로고
    • The cognitive packet network: A survey
    • G. Sakellari The cognitive packet network: a survey The Computer Journal 53 2010 268 279
    • (2010) The Computer Journal , vol.53 , pp. 268-279
    • Sakellari, G.1
  • 73
    • 0000140889 scopus 로고
    • Product form queuing networks with negative and positive customers
    • E. Gelenbe Product form queuing networks with negative and positive customers Journal of Applied Probability 28 1991 656 663
    • (1991) Journal of Applied Probability , vol.28 , pp. 656-663
    • Gelenbe, E.1
  • 74
    • 0034675407 scopus 로고    scopus 로고
    • G-networks: A versatile approach for work removal in queuing networks
    • J.R. Artalejo G-networks: a versatile approach for work removal in queuing networks European Journal of Operations Research 126 2000 233 249
    • (2000) European Journal of Operations Research , vol.126 , pp. 233-249
    • Artalejo, J.R.1
  • 76
  • 77
    • 84872543023 scopus 로고    scopus 로고
    • Efficient BackProp
    • Neural Networks: Tricks of the Trade
    • Y. LeCun Efficient BackProp Genevieve B. Orr, Klauss-Robert Muller, Neural Networks: Tricks of the Trade Lecture Notes in Computer Science 1998 Springer 9 50
    • (1998) Lecture Notes in Computer Science , pp. 9-50
    • Lecun, Y.1
  • 78
    • 33750119752 scopus 로고    scopus 로고
    • On adaptive learning rate that guarantees convergence in feedforward networks
    • DOI 10.1109/TNN.2006.878121
    • L. Beheva, S. Kumar, and A. Patnaik On adaptive learning rate that guarantees convergence in feedforward networks IEEE Transactions on Neural Networks 17 5 2006 1116 1125 (Pubitemid 46445171)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.5 , pp. 1116-1125
    • Behera, L.1    Kumar, S.2    Patnaik, A.3
  • 79
    • 40549088280 scopus 로고    scopus 로고
    • Training two-layered feedforward networks with variable projection method
    • DOI 10.1109/TNN.2007.911739
    • C-T. Kim, and J.-J. Lee Training two-layer feedforward networks with variable projection method IEEE Transactions on Neural Networks 19 2 2008 371 375 (Pubitemid 351359303)
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.2 , pp. 371-375
    • Kim, C.-T.1    Lee, J.-J.2
  • 80
    • 0017083148 scopus 로고
    • Adaptive pattern classification and universal recoding, II: Feedback, expectation, olfaction, and illusions
    • S. Grossberg Adaptive pattern classification and universal recoding, II: feedback, expectation, olfaction, and illusions Biological Cybernetic 1976 187 202
    • (1976) Biological Cybernetic , pp. 187-202
    • Grossberg, S.1
  • 84
    • 0030198885 scopus 로고    scopus 로고
    • Gaussian ARTMAP: A neural network for fast incremental learning of noisy multidimensional maps
    • DOI 10.1016/0893-6080(95)00115-8
    • J.R. Williamson Gaussian ARTMAP: a neural network for fast incremental learning of noisy multidimensional maps Neural Networks 9 5 1996 881 897 (Pubitemid 26264498)
    • (1996) Neural Networks , vol.9 , Issue.5 , pp. 881-897
    • Williamson, J.R.1
  • 87
    • 0031212567 scopus 로고    scopus 로고
    • A closer look at drawbacks of minimizing weighted sums of objectives for pareto set generation in multicriteria optimization problems
    • I. Das, and J. Dennis A closer look at drawbacks of minimizing weighted sums of objectives for pareto set generation in multicriteria optimization problems Structural Optimization 14 1997 6 69
    • (1997) Structural Optimization , vol.14 , pp. 6-69
    • Das, I.1    Dennis, J.2
  • 88
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges A tutorial on support vector machines for pattern recognition Data Mining and Knowledge Discovery 2 2 1998 121 167 (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 91
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • J.C. Platt Fast training of support vector machines using sequential minimal optimization Advances in Kernel Methods: Support Vector Learning 1999 185 208
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 92
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • T. Lim, W. Loh, and Y. Shih A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms Machine Learning 40 2000 203 229
    • (2000) Machine Learning , vol.40 , pp. 203-229
    • Lim, T.1    Loh, W.2    Shih, Y.3
  • 93
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar Statistical comparisons of classifiers over multiple datasets Journal of Machine Learning Research 7 2006 1 30 (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 94
    • 58149287952 scopus 로고    scopus 로고
    • An extension on "statistical comparisons of classifiers over multiple data-sets" for all pairwise comparions
    • S. Garcia, and F. Herrera An extension on "statistical comparisons of classifiers over multiple data-sets" for all pairwise comparions Journal of Machine Learning Research 9 2008 2677 2694
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2677-2694
    • Garcia, S.1    Herrera, F.2
  • 96
    • 0026982122 scopus 로고
    • Discriminative learning for minimum error classification
    • DOI 10.1109/78.175747
    • B-H. Juang, and S. Katagiri Discriminative learning for minimum error classification IEEE Transactions on Signal Processing 40 12 1992 3043 3054 (Pubitemid 23603018)
    • (1992) IEEE Transactions on Signal Processing , vol.40 , Issue.12 , pp. 3043-3054
    • Juang Biing-Hwang1    Katagiri Shigeru2
  • 97
    • 0026711368 scopus 로고
    • Improving the convergence of the back-propagation algorithm
    • A. van Ooyen, and B. Nienhuis Improving the convergence of the back-propagation algorithm Neural Networks 5 1992 465 471
    • (1992) Neural Networks , vol.5 , pp. 465-471
    • Van Ooyen, A.1    Nienhuis, B.2
  • 98
    • 0027632250 scopus 로고
    • A novel multi-layer neural networks training algorithm that minimizes the probability of classification error
    • V. Nedeljkovic A novel multi-layer neural networks training algorithm that minimizes the probability of classification error IEEE Transactions on Neural Networks 4 4 1993
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.4
    • Nedeljkovic, V.1
  • 101
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • DOI 10.1109/5.784219
    • X. Yao Evolving artificial neural networks Proceedings of the IEEE 87 9 1999 1423 1447 (Pubitemid 30503424)
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 103
    • 0035566378 scopus 로고    scopus 로고
    • A robust evolutionary algorithm for training neural networks
    • J.M. Yang, and C.Y. Kao A robust evolutionary algorithm for training neural networks Neural Computing and Applications 10 2001 214 230
    • (2001) Neural Computing and Applications , vol.10 , pp. 214-230
    • Yang, J.M.1    Kao, C.Y.2
  • 104
    • 26844480248 scopus 로고    scopus 로고
    • An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems
    • DOI 10.1109/TSMCB.2005.847740
    • E. Cantu-Paz, and C. Kamath An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems IEEE Transactions on Systems, Man and Cybernetics Part B 35 2005 915 927 (Pubitemid 41444577)
    • (2005) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.35 , Issue.5 , pp. 915-927
    • Cantu-Paz, E.1    Kamath, C.2
  • 107
    • 0003140039 scopus 로고
    • Schlierkamp-Vosen, predictive models for the breeder genetic algorithm, I. Continuous parameter optimizations
    • H. Muehlenbein Schlierkamp-Vosen, predictive models for the breeder genetic algorithm, I. Continuous parameter optimizations Evolutionary Computation 1 1 1993 25 49
    • (1993) Evolutionary Computation , vol.1 , Issue.1 , pp. 25-49
    • Muehlenbein, H.1
  • 108
    • 21844493185 scopus 로고
    • Soft Genetic Operators in Evolutionary Computation, Evolution and Biocomputation
    • Springer Berlin
    • H.-M. Voigt Soft Genetic Operators in Evolutionary Computation, Evolution and Biocomputation Lecture Notes in Computer Science vol. 899 1995 Springer Berlin 123 141
    • (1995) Lecture Notes in Computer Science , vol.899 , pp. 123-141
    • Voigt, H.-M.1
  • 111
    • 0026955395 scopus 로고
    • Avoiding false local minima by proper initialization of connections
    • DOI 10.1109/72.165592
    • L.F.A. Wessels, and E. Barnard Avoiding false local minima by proper initialization of connections IEEE Transactions on Neural Networks 3 1992 899 905 (Pubitemid 23580842)
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.6 , pp. 899-905
    • Wessels Lodewyk, F.A.1    Barnard Etienne2
  • 112
    • 34248656519 scopus 로고    scopus 로고
    • Neural network learning With global heuristic search
    • DOI 10.1109/TNN.2007.891633
    • I. Jordanov, and A. Georgieva Neural network learning with global heuristic search IEEE Transactions on Neural Networks 18 3 2007 937 942 (Pubitemid 46773760)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.3 , pp. 937-942
    • Jordanov, I.1    Georgieva, A.2
  • 113
    • 33644978280 scopus 로고    scopus 로고
    • Evolutionary multi-objective optimization: A historical view of the field
    • C.C. Coello Evolutionary multi-objective optimization: a historical view of the field IEEE Computational Intelligence Magazin 1 2006 2 36
    • (2006) IEEE Computational Intelligence Magazin , Issue.1 , pp. 2-36
    • Coello, C.C.1
  • 114
    • 0000919523 scopus 로고    scopus 로고
    • Single-objective and two-objective genetic algorithms for selecting limguistic rules for pattern classification problems
    • H. Ishibuchi, T. Murata, and I.B. Turksen Single-objective and two-objective genetic algorithms for selecting limguistic rules for pattern classification problems Fuzzy Sets and Systems 89 2 1997 13 150
    • (1997) Fuzzy Sets and Systems , vol.89 , Issue.2 , pp. 13-150
    • Ishibuchi, H.1    Murata, T.2    Turksen, I.B.3
  • 115
    • 33646054819 scopus 로고    scopus 로고
    • Multi-class ROC analysis from a multi-objective optimization perspective
    • R.M. Everson, and J.E. Fieldsend Multi-class ROC analysis from a multi-objective optimization perspective Pattern Recognition Letters 27 8 2006 91 927
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 91-927
    • Everson, R.M.1    Fieldsend, J.E.2
  • 116
    • 38149017213 scopus 로고    scopus 로고
    • Evolutionary multi-objective optimizationg of Spiking neural networks
    • Proceedings of the International Conference of Artificial Neural Networks Springer Verlag Berlin, Heidelberg
    • Y. Jin, R. Wen, and B. Sendhoff Evolutionary multi-objective optimizationg of Spiking neural networks Proceedings of the International Conference of Artificial Neural Networks LNCS vol. 4668 2007 Springer Verlag Berlin, Heidelberg 37 379
    • (2007) LNCS , vol.4668 , pp. 37-379
    • Jin, Y.1    Wen, R.2    Sendhoff, B.3
  • 118
    • 43449135303 scopus 로고    scopus 로고
    • Pareto-based multiobjective machine learning: An overview and case studies
    • DOI 10.1109/TSMCC.2008.919172, Special Issue on Enterprise Computing and Industrial Applications
    • Y. Jin, and B. Sendhoff Pareto-based multi-objective Machine Learning: an overview and case studies IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 38 3 2008 397 415 (Pubitemid 351663123)
    • (2008) IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews , vol.38 , Issue.3 , pp. 397-415
    • Jin, Y.1    Sendhoff, B.2
  • 119
    • 0000106040 scopus 로고
    • Universal approximation using radial basis function neural networks
    • J. Park, and J.W. Sandber Universal approximation using radial basis function neural networks Neural Computation 3 2 1991 246 257
    • (1991) Neural Computation , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandber, J.W.2
  • 120
    • 0023981451 scopus 로고
    • The ART of adaptive pattern recognition by a self-organizing neural network
    • DOI 10.1109/2.33
    • G.A. Carpenter, and S. Grossberg The ART of adaptive pattern recognition by a self-organizing neural network Computer 21 3 1988 77 88 (Pubitemid 18612300)
    • (1988) Computer , vol.21 , Issue.3 , pp. 77-88
    • Carpenter Gail, A.1    Grossberg Stephen2
  • 122
    • 0026392741 scopus 로고
    • Properties of learning related to pattern diversity in ART1
    • M. Georgiopoulos, G.L. Heileman, and J. Huang Properties of learning related to pattern diversity in ART1 Neural Networks 4 6 1991 751 758
    • (1991) Neural Networks , vol.4 , Issue.6 , pp. 751-758
    • Georgiopoulos, M.1    Heileman, G.L.2    Huang, J.3
  • 125
    • 0030462723 scopus 로고    scopus 로고
    • Order of search in Fuzzy ART and Fuzzy ARTMAP: Effect of the choice parameter
    • DOI 10.1016/S0893-6080(96)00018-4, PII S0893608096000184
    • M. Georgiopoulos, H. Fernlund, G. Bebis, and G.L. Heileman Order of search in Fuzzy ART and Fuzzy ARTMAP: effect of the choice parameter Neural Networks 9 9 1996 1541 1559 (Pubitemid 27055273)
    • (1996) Neural Networks , vol.9 , Issue.9 , pp. 1541-1559
    • Georgiopoulos, M.1    Fernlund, H.2    Bebis, G.3    Heileman, G.L.4
  • 126
    • 0036887497 scopus 로고    scopus 로고
    • Category regions as new geometrical concepts in fuzzy ART and fuzzy ARTMAP
    • G.C. Anagnostopoulos, and M. Georgiopoulos Category regions as new geometrical concepts in fuzzy ART and fuzzy ARTMAP Neural Networks 15 10 2002 1205 1221
    • (2002) Neural Networks , vol.15 , Issue.10 , pp. 1205-1221
    • Anagnostopoulos, G.C.1    Georgiopoulos, M.2
  • 127
    • 0025507332 scopus 로고
    • On the decision regions of multi-layer perceptrons
    • G.J. Gibson, and C.F.N. Cowan On the decision regions of multi-layer perceptrons Proceedings of the IEEE 78 10 1990
    • (1990) Proceedings of the IEEE , vol.78 , Issue.10
    • Gibson, G.J.1    Cowan, C.F.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.