메뉴 건너뛰기




Volumn , Issue , 2007, Pages 608-615

Likelihood ratios and recurrent random neural networks in detection of Denial of Service attacks

Author keywords

Bayesian decision taking; Denial of service; Intrusion detection; Network security; Recurrent random neural networks

Indexed keywords

BAYESIAN DECISION; DENIAL OF SERVICE; DENIAL OF SERVICE ATTACKS; DETECTION RATES; DETECTION TECHNIQUE; FALSE ALARMS; INCOMING TRAFFIC; INPUT FEATURES; INPUT TRAFFIC; INTERNET COMMUNICATION; LIKELIHOOD ESTIMATION; LIKELIHOOD RATIOS; RANDOM NEURAL NETWORK; SECURITY THREATS;

EID: 84870227311     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (11)

References (26)
  • 1
    • 24644453625 scopus 로고    scopus 로고
    • Detection of distributed denial of service attacks using statistical pre-processor and unsupervised neural networks
    • R. Jalili, F. Imani-Mehr, M. Amini, and H.-R. Shahriari, 2005, "Detection of Distributed Denial of Service Attacks Using Statistical Pre-processor and Unsupervised Neural Networks", Lecture Notes in Computer Science, Vol. 3439, pp. 192-203.
    • (2005) Lecture Notes in Computer Science , vol.3439 , pp. 192-203
    • Jalili, R.1    Imani-Mehr, F.2    Amini, M.3    Shahriari, H.-R.4
  • 2
    • 33745922681 scopus 로고    scopus 로고
    • A combined data mining approach for DDoS attack detection
    • M. Kim, H. Na, K. Chae, H. Bang, and J. Na, 2004, "A Combined Data Mining Approach for DDoS Attack Detection", Lecture Notes in Computer Science, Vol. 3090, pp. 943-950.
    • (2004) Lecture Notes in Computer Science , vol.3090 , pp. 943-950
    • Kim, M.1    Na, H.2    Chae, K.3    Bang, H.4    Na, J.5
  • 3
    • 16644393989 scopus 로고    scopus 로고
    • Real-time detection of distributed denial-of-service attacks using RBF networks and statistical features
    • D. Gavrilis and E. Dermatas, 2005, "Real-time detection of distributed denial-of-service attacks using RBF networks and statistical features",Computer Networks, Vol. 48, pp. 235-245.
    • (2005) Computer Networks , vol.48 , pp. 235-245
    • Gavrilis, D.1    Dermatas, E.2
  • 4
    • 27144490740 scopus 로고    scopus 로고
    • Detecting anomalous network traffic with combined fuzzy-based approaches
    • H.T. He, X.N. Luo, and B.L. Liu, 2005, "Detecting Anomalous Network Traffic with Combined Fuzzy-Based Approaches", Lecture Notes in Computer Science, Vol. 3645, pp. 433-442.
    • (2005) Lecture Notes in Computer Science , vol.3645 , pp. 433-442
    • He, H.T.1    Luo, X.N.2    Liu, B.L.3
  • 5
    • 9444289934 scopus 로고    scopus 로고
    • Computational intelligent techniques for detecting denial of service attacks
    • S. Mukkamala and A.H. Sung, 2004, "Computational Intelligent Techniques for Detecting Denial of Service Attacks", Lecture Notes in Artificial Intelligence, Vol. 3029, pp. 616-624.
    • (2004) Lecture Notes in Artificial Intelligence , vol.3029 , pp. 616-624
    • Mukkamala, S.1    Sung, A.H.2
  • 6
    • 33646900187 scopus 로고    scopus 로고
    • Change trend of averaged Hurst parameter of traffic under DDOS flood attacks
    • M. Li, 2006, "Change Trend of Averaged Hurst Parameter of Traffic under DDOS Flood Attacks", Computers and Security, Vol. 25, pp. 213-220.
    • (2006) Computers and Security , vol.25 , pp. 213-220
    • Li, M.1
  • 7
    • 8344244591 scopus 로고    scopus 로고
    • An approach to reliably identifying signs of DDOS flood attacks based on LRD traffic pattern recognition
    • M. Li, 2004, "An Approach to Reliably Identifying Signs of DDOS Flood Attacks Based on LRD Traffic Pattern Recognition", Computers and Security, Vol. 23, No. 549-558.
    • (2004) Computers and Security , vol.23 , Issue.549-558
    • Li, M.1
  • 8
    • 3142512777 scopus 로고    scopus 로고
    • Detecting DDOS attack based on network self-similarity
    • Y. Xiang, Y. Lin, W.L. Lei, and S.J. Huang, 2004, "Detecting DDOS attack based on Network Self-Similarity", IEE Proceedings in Communication, Vol. 151, No.3, pp. 292-295.
    • (2004) IEE Proceedings in Communication , vol.151 , Issue.3 , pp. 292-295
    • Xiang, Y.1    Lin, Y.2    Lei, W.L.3    Huang, S.J.4
  • 10
    • 17444397467 scopus 로고    scopus 로고
    • DDoS attack detection and wavelets
    • L. Li and G. Lee, 2005, "DDoS Attack Detection and Wavelets", Telecommunication Systems, Vol. 28:3, No. 4, pp. 435-451.
    • (2005) Telecommunication Systems , vol.28 , Issue.3-4 , pp. 435-451
    • Li, L.1    Lee, G.2
  • 11
    • 35048886720 scopus 로고    scopus 로고
    • A novel DDoS attack detecting algorithm based on the continuous wavelet transform
    • X. Yang, Y. Liu, M. Zeng, and Y. Shi, 2004, "A Novel DDoS Attack Detecting Algorithm Based on the Continuous Wavelet Transform", Lecture Notes in Computer Science, Vol. 3309, pp. 173-181.
    • (2004) Lecture Notes in Computer Science , vol.3309 , pp. 173-181
    • Yang, X.1    Liu, Y.2    Zeng, M.3    Shi, Y.4
  • 12
    • 35048886560 scopus 로고    scopus 로고
    • Detecting distributed denial of service (DDoS) attacks through inductive learning
    • S. Noh, C. Lee, K. Choi, and G. Jung, 2003, "Detecting Distributed Denial of Service (DDoS) Attacks through Inductive Learning", Lecture Notes in Computer Science, Vol. 2690, pp. 286-295.
    • (2003) Lecture Notes in Computer Science , vol.2690 , pp. 286-295
    • Noh, S.1    Lee, C.2    Choi, K.3    Jung, G.4
  • 13
    • 33746985496 scopus 로고    scopus 로고
    • Collaborative detection and filtering of shrew DDoS attacks using spectral analysis
    • Y. Chen and K. Hwang, 2006, "Collaborative detection and filtering of shrew DDoS attacks using spectral analysis", Parallel Distrib. Comput., Vol. 66, pp. 1137-1151.
    • (2006) Parallel Distrib. Comput. , vol.66 , pp. 1137-1151
    • Chen, Y.1    Hwang, K.2
  • 14
    • 0000428263 scopus 로고
    • Learning in the recurrent random neural network
    • E. Gelenbe, 1993, "Learning in the Recurrent Random Neural Network", Neural Computation, Vol. 5, pp. 154-164.
    • (1993) Neural Computation , vol.5 , pp. 154-164
    • Gelenbe, E.1
  • 16
    • 1642617444 scopus 로고    scopus 로고
    • The Hurst exponent over time: Testing the assertion that emerging markets are becoming more efficient
    • D.O. Cajueiro and B.M. Tabak, 2004, "The Hurst Exponent over Time:Testing the Assertion That Emerging Markets Are Becoming More Efficient", Physica A, Vol. 336, pp. 521-537.
    • (2004) Physica A , vol.336 , pp. 521-537
    • Cajueiro, D.O.1    Tabak, B.M.2
  • 19
    • 0030270532 scopus 로고    scopus 로고
    • Low bit-rate video compression with neural networks and temporal subsampling
    • C. Cramer, E. Gelenbe, and H. Bakircioglu, 1996, "Low bit-rate video compression with neural networks and temporal subsampling", Proc. IEEE, Vol. 84, No. 6, pp. 1529-1543.
    • (1996) Proc. IEEE , vol.84 , Issue.6 , pp. 1529-1543
    • Cramer, C.1    Gelenbe, E.2    Bakircioglu, H.3
  • 20
    • 33746488814 scopus 로고    scopus 로고
    • Texture classification and retrieval using the random neural network model
    • A. Teke and V. Atalay, 2006 "Texture Classification and Retrieval Using the Random Neural Network Model", Computational Management Science, Vol. 3(3), pp. 193-205.
    • (2006) Computational Management Science , vol.3 , Issue.3 , pp. 193-205
    • Teke, A.1    Atalay, V.2
  • 21
    • 0010358535 scopus 로고
    • Minimum cost graph covering with the random neural network
    • O. Balci, R. Sharda, S. Zenios (Eds.), Pergamon Press, New York
    • E. Gelenbe and F. Batty, 1992, "Minimum cost graph covering with the random neural network", in: O. Balci, R. Sharda, S. Zenios (Eds.), Computer Science and Operations Research, Pergamon Press, New York, pp. 139-147.
    • (1992) Computer Science and Operations Research , pp. 139-147
    • Gelenbe, E.1    Batty, F.2
  • 24
    • 84871013073 scopus 로고    scopus 로고
    • UCLA CSD packet traces: http://www.lasr.cs.ucla.edu/ddos/traces/public/ usc/.
    • UCLA CSD Packet Traces


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.