메뉴 건너뛰기




Volumn 53, Issue 3, 2010, Pages 251-267

The random neural network: A survey

Author keywords

Applications; Learning algorithms; Random neural network (RNN); RNN extension models; Survey

Indexed keywords

ANALYTICAL EQUATIONS; ARTIFICIAL NEURAL NETWORK MODELS; CLASSIFICATION ,; CONTINUOUS FUNCTIONS; EXTENSION MODELS; GENE REGULATORY NETWORKS; LOW COMPLEXITY; NEURONAL NETWORKS; RANDOM NEURAL NETWORK; RECURRENT NEURAL NETWORK MODEL; RESEARCH ACTIVITIES; RNN EXTENSION MODELS; UNIVERSAL APPROXIMATORS;

EID: 77649317294     PISSN: 00104620     EISSN: 14602067     Source Type: Journal    
DOI: 10.1093/comjnl/bxp032     Document Type: Article
Times cited : (82)

References (97)
  • 1
    • 0001373628 scopus 로고
    • Random neural networks with negative and positive signals and product form solution
    • Gelenbe, E. (1989) Random neural networks with negative and positive signals and product form solution. Neural Comput., 1, 502-510.
    • (1989) Neural Comput. , vol.1 , pp. 502-510
    • Gelenbe, E.1
  • 2
    • 0002761101 scopus 로고
    • Theory of the random neural network
    • Gelenbe, E. (ed.), Elsevier Science Publishers B.V
    • Gelenbe, E. (1991) Theory of the Random Neural Network. In Gelenbe, E. (ed.), Neural Networks: Advances and Applications, pp. 1-20. Elsevier Science Publishers B.V.
    • (1991) Neural Networks: Advances and Applications , pp. 1-20
    • Gelenbe, E.1
  • 3
    • 0000145931 scopus 로고
    • Stability of the random neural network
    • Gelenbe, E. (1990) Stability of the random neural network. Neural Comput., 2, 239-247.
    • (1990) Neural Comput. , vol.2 , pp. 239-247
    • Gelenbe, E.1
  • 4
    • 0002761101 scopus 로고
    • Minimum graph covering with the random neural network model
    • Gelenbe, E. (ed.), Elsevier Science Publishers B.V
    • Gelenbe, E. and Batty, F. (1992) Minimum Graph Covering with the Random Neural Network Model. In Gelenbe, E. (ed.), Neural Networks: Advances and Applications, Vol.2, pp. 215-222. Elsevier Science Publishers B.V.
    • (1992) Neural Networks: Advances and Applications , vol.2 , pp. 215-222
    • Gelenbe, E.1    Batty, F.2
  • 5
    • 0000428263 scopus 로고
    • Learning in the recurrent random network
    • Gelenbe, E. (1993) Learning in the recurrent random network. Neural Comput., 5, 154-164.
    • (1993) Neural Comput. , vol.5 , pp. 154-164
    • Gelenbe, E.1
  • 6
    • 0039136712 scopus 로고
    • Associative memory operations of the random neural network
    • Espoo, Finland, June 24-28. North-Holland, Amsterdam
    • Gelenbe, E., Stafylopatis, A. and Likas, A. (1991) Associative Memory Operations of the Random Neural Network. Proc. Int. Conf. Artificial Neural Networks, Espoo, Finland, June 24-28 pp. 307-312. North-Holland, Amsterdam.
    • (1991) Proc. Int. Conf. Artificial Neural Networks , pp. 307-312
    • Gelenbe, E.1    Stafylopatis, A.2    Likas, A.3
  • 7
    • 23044509968 scopus 로고    scopus 로고
    • Random neural networks with state-dependent firing neurons
    • Sungho, J., Yin, J. and Zhi-Hong, M. (2005) Random neural networks with state-dependent firing neurons. IEEE Trans. Neural Netw., 16, 980-983.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , pp. 980-983
    • Sungho, J.1    Yin, J.2    Zhi-Hong, M.3
  • 8
    • 55449106994 scopus 로고    scopus 로고
    • Synchronised interactions in spiked neuronal networks
    • Gelenbe, E. and Timotheou, S. (2008) Synchronised interactions in spiked neuronal networks. Comp. J., 51, 723-730.
    • (2008) Comp. J. , vol.51 , pp. 723-730
    • Gelenbe, E.1    Timotheou, S.2
  • 9
    • 51349159817 scopus 로고    scopus 로고
    • Random neural networks with synchronised interactions
    • Gelenbe, E. and Timotheou, S. (2008) Random neural networks with synchronised interactions. Neural Comput., 20, 2308-2324.
    • (2008) Neural Comput. , vol.20 , pp. 2308-2324
    • Gelenbe, E.1    Timotheou, S.2
  • 10
    • 34548854836 scopus 로고    scopus 로고
    • Steady-state solution of probabilistic gene regulatory networks
    • Gelenbe, E. (2007) Steady-state solution of probabilistic gene regulatory networks. Phys. Rev. E, 76, 031903.
    • (2007) Phys. Rev. e , vol.76 , pp. 031903
    • Gelenbe, E.1
  • 11
    • 0033561945 scopus 로고    scopus 로고
    • Random neural networks with multiple classes of signals
    • Gelenbe, E. and Fourneau, J.M. (1999) Random neural networks with multiple classes of signals. Neural Comput., 11, 953-963.
    • (1999) Neural Comput. , vol.11 , pp. 953-963
    • Gelenbe, E.1    Fourneau, J.M.2
  • 12
    • 0043167558 scopus 로고    scopus 로고
    • Computing the steady state distribution of networks with positive and negative customers
    • Dublin, Ireland, July. North-Holland, Amsterdam
    • Fourneau, J. Computing the Steady State Distribution of Networks with Positive and Negative Customers. Proc. 13th IMACS World Cong. Computational and Applied Mathematics, Dublin, Ireland, July. North-Holland, Amsterdam.
    • Proc. 13th IMACS World Cong. Computational and Applied Mathematics
    • Fourneau, J.1
  • 13
    • 77649329625 scopus 로고    scopus 로고
    • A Linear approximation for training recurrent random neural networks
    • Antalya, Turkey, October 26-28. IOS Press, Amsterdam
    • Halici, U. and Karaoz, E. (1998) A Linear Approximation for Training Recurrent Random Neural Networks. Proc. 13th Int. Symp. Computer and Information Sciences, Antalya, Turkey, October 26-28, pp. 149-156. IOS Press, Amsterdam.
    • (1998) Proc. 13th Int. Symp. Computer and Information Sciences , pp. 149-156
    • Halici, U.1    Karaoz, E.2
  • 14
    • 77649323314 scopus 로고
    • Supervised learning and recall of simple images with the random neural network
    • Hubert, C. (1993) Supervised learning and recall of simple images with the random neural network. C. R. Acad. Sci. I, 316, 93-96.
    • (1993) C. R. Acad. Sci. i , vol.316 , pp. 93-96
    • Hubert, C.1
  • 15
    • 77649325488 scopus 로고    scopus 로고
    • Learning by optimization in random neural networks
    • Antalya, Turkey, October 26-28. IOS Press, Amsterdam
    • Atalay, V. (1998) Learning by Optimization in Random Neural Networks. Proc. 13th Int. Symp. Computer and Information Sciences, Antalya, Turkey, October 26-28, pp. 143-148. IOS Press, Amsterdam.
    • (1998) Proc. 13th Int. Symp. Computer and Information Sciences , pp. 143-148
    • Atalay, V.1
  • 16
    • 58849163716 scopus 로고    scopus 로고
    • Nonnegative least squares learning for the random neural network
    • Prague, Czech Republic, September 3-6. Springer, Berlin, Heidelberg
    • Timotheou, S. (2008) Nonnegative Least Squares Learning for the Random Neural Network. Proc. 18th Int. Conf. Artificial Neural Networks (ICANN 2008), Prague, Czech Republic, September 3-6, pp. 195-204. Springer, Berlin, Heidelberg.
    • (2008) Proc. 18th Int. Conf. Artificial Neural Networks (ICANN 2008) , pp. 195-204
    • Timotheou, S.1
  • 17
    • 70350714259 scopus 로고    scopus 로고
    • A novel weight initialization method for the random neural network
    • to appear
    • Timotheou, S. (2009). A novel weight initialization method for the random neural network. Neurocomputing, to appear.
    • (2009) Neurocomputing
    • Timotheou, S.1
  • 18
    • 77649308364 scopus 로고
    • Learning internal representations with the N-M-N random neural network
    • Hubert, C. (1993) Learning internal representations with the N-M-N random neural network. C. R. Acad. Sci. II, 317, 451-456.
    • (1993) C. R. Acad. Sci. II , vol.317 , pp. 451-456
    • Hubert, C.1
  • 19
    • 22444454216 scopus 로고    scopus 로고
    • Resolution of pattern recognition problems using a hybrid genetic/random neural network learning algorithm
    • Aguilar, J. and Colmenares, A. (1998) Resolution of pattern recognition problems using a hybrid genetic/random neural network learning algorithm. Pattern Anal. Appl., 1, 52-61.
    • (1998) Pattern Anal. Appl. , vol.1 , pp. 52-61
    • Aguilar, J.1    Colmenares, A.2
  • 20
    • 0034675406 scopus 로고    scopus 로고
    • Training the random neural network using quasi-Newton methods
    • Likas, A. and Stafylopatis, A. (2000) Training the random neural network using quasi-Newton methods. Eur. J. Oper. Res., 126, 331-339.
    • (2000) Eur. J. Oper. Res. , vol.126 , pp. 331-339
    • Likas, A.1    Stafylopatis, A.2
  • 21
    • 0036859210 scopus 로고    scopus 로고
    • Learning in the multiple class random neural network
    • Gelenbe, E. and Hussain, K. (2002) Learning in the multiple class random neural network. IEEE Trans. Neural Netw., 13, 1257-1267.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 1257-1267
    • Gelenbe, E.1    Hussain, K.2
  • 22
    • 0031060284 scopus 로고    scopus 로고
    • Reinforcement learning in random neural networks for cascaded decisions
    • Halici, U. (1997) Reinforcement learning in random neural networks for cascaded decisions. Biosystems, 40, 83-91.
    • (1997) Biosystems , vol.40 , pp. 83-91
    • Halici, U.1
  • 23
    • 0034675395 scopus 로고    scopus 로고
    • Reinforcement learning with internal expectation for the random neural network
    • Halici, U. (2000) Reinforcement learning with internal expectation for the random neural network. Eur. J. Oper. Res., 126, 288-307.
    • (2000) Eur. J. Oper. Res. , vol.126 , pp. 288-307
    • Halici, U.1
  • 24
    • 0034813305 scopus 로고    scopus 로고
    • Reinforcement learning with internal expectation in the random neural networks for cascaded decisions
    • Halici, U. (2001) Reinforcement learning with internal expectation in the random neural networks for cascaded decisions. Biosystems, 63, 21-34.
    • (2001) Biosystems , vol.63 , pp. 21-34
    • Halici, U.1
  • 25
    • 21344486418 scopus 로고
    • G-networks: A unifying model for neural and queueing networks
    • Gelenbe, E. (1994) G-networks: a unifying model for neural and queueing networks. Ann. Oper. Res., 48, 433-461.
    • (1994) Ann. Oper. Res. , vol.48 , pp. 433-461
    • Gelenbe, E.1
  • 26
    • 0000140889 scopus 로고
    • Product-form queueing networks with negative and positive customers
    • Gelenbe, E. (1991) Product-form queueing networks with negative and positive customers. J. Appl. Probab., 28, 656-663.
    • (1991) J. Appl. Probab. , vol.28 , pp. 656-663
    • Gelenbe, E.1
  • 27
    • 2442573048 scopus 로고    scopus 로고
    • The first decade of G-networks
    • Gelenbe, E. (2000) The first decade of G-networks. Eur. J. Oper. Res., 126, 231-232.
    • (2000) Eur. J. Oper. Res. , vol.126 , pp. 231-232
    • Gelenbe, E.1
  • 28
    • 21344498249 scopus 로고
    • G-networks with triggered customer movement
    • Gelenbe, E. (1993) G-networks with triggered customer movement. J. App. Probab., 30, 742-748.
    • (1993) J. App. Probab. , vol.30 , pp. 742-748
    • Gelenbe, E.1
  • 30
    • 0030080867 scopus 로고    scopus 로고
    • G-networks with multiple classes of positive and negative customers
    • Fourneau, J.M., Gelenbe, E. and Suros, R. (1996) G-networks with multiple classes of positive and negative customers. Theoret. Comput. Sci., 155, 141-156.
    • (1996) Theoret. Comput. Sci. , vol.155 , pp. 141-156
    • Fourneau, J.M.1    Gelenbe, E.2    Suros, R.3
  • 31
    • 0004950826 scopus 로고    scopus 로고
    • G-networks with multiple classes of signals and positive customers
    • Gelenbe, E. and Labed, A. (1998) G-networks with multiple classes of signals and positive customers. Eur. J. Oper. Res., 108, 293-305.
    • (1998) Eur. J. Oper. Res. , vol.108 , pp. 293-305
    • Gelenbe, E.1    Labed, A.2
  • 32
    • 33845276163 scopus 로고    scopus 로고
    • Flow equivalence and stochastic equivalence in G-networks
    • Fourneau, J.-M. and Gelenbe, E. (2004) Flow equivalence and stochastic equivalence in G-networks. Comput. Manage. Sci., 1, 179-192.
    • (2004) Comput. Manage. Sci. , vol.1 , pp. 179-192
    • Fourneau, J.-M.1    Gelenbe, E.2
  • 33
    • 0034675407 scopus 로고    scopus 로고
    • G-networks: A versatile approach for work removal in queueing networks
    • Artalejo, J.R. (2000) G-networks: a versatile approach for work removal in queueing networks. Eur. J. Ope. Res., 126, 233-249.
    • (2000) Eur. J. Ope. Res. , vol.126 , pp. 233-249
    • Artalejo, J.R.1
  • 34
    • 0031269296 scopus 로고    scopus 로고
    • A class of genetic algorithms with analytical solution
    • Gelenbe, E. (1997) A class of genetic algorithms with analytical solution. Robot. Auton. Syst., 22, 59-64.
    • (1997) Robot. Auton. Syst. , vol.22 , pp. 59-64
    • Gelenbe, E.1
  • 35
    • 0032212553 scopus 로고    scopus 로고
    • Oscillatory corticothalamic response to somatosensory input
    • Gelenbe, E. and Cramer, C. (1998) Oscillatory corticothalamic response to somatosensory input. Biosystems, 48, 67-75.
    • (1998) Biosystems , vol.48 , pp. 67-75
    • Gelenbe, E.1    Cramer, C.2
  • 36
    • 0021835689 scopus 로고
    • "Neural" computation of decisions in optimization problems
    • Hopfield, J. and Tank, D. (1985) "Neural" computation of decisions in optimization problems. Biol. Cybern., 52, 141-152.
    • (1985) Biol. Cybern. , vol.52 , pp. 141-152
    • Hopfield, J.1    Tank, D.2
  • 37
    • 0002381070 scopus 로고    scopus 로고
    • Neural networks for combinatorial optimization: A review of more than a decade of research
    • Smith, K. (1999) Neural networks for combinatorial optimization: a review of more than a decade of research. INFORMS J. Comput, 11, 15-34.
    • (1999) INFORMS J. Comput , vol.11 , pp. 15-34
    • Smith, K.1
  • 38
    • 0032208429 scopus 로고    scopus 로고
    • Neural techniques for combinatorial optimization with applications
    • PII S1045922798073524
    • Smith, K., Palaniswami, M. and Krishnamoorthy, M. (1998) Neural techniques for combinatorial optimization with applications. IEEE Trans. Neural Netw., 9, 1301-1318. (Pubitemid 128742410)
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 1301-1318
    • Smith, K.1    Palaniswami, M.2    Krishnamoorthy, M.3
  • 39
    • 0031104514 scopus 로고    scopus 로고
    • Task assignment and transaction clustering heuristics for distributed systems
    • Aguilar, J. and Gelenbe, E. (1997) Task assignment and transaction clustering heuristics for distributed systems. Inform. Sci.-Inform. Comput. Sci, 97, 199-221.
    • (1997) Inform. Sci.-Inform. Comput. Sci , vol.97 , pp. 199-221
    • Aguilar, J.1    Gelenbe, E.2
  • 40
    • 77649281692 scopus 로고
    • A probabilistic generalization of the SAT problem
    • Gelenbe, E. (1992) A probabilistic generalization of the SAT problem. C. R. Acad. Sci. I, 315, 339-342.
    • (1992) C. R. Acad. Sci. I. , vol.315 , pp. 339-342
    • Gelenbe, E.1
  • 42
    • 77649327608 scopus 로고    scopus 로고
    • A random neural network for the dynamic multicast problem
    • Aiello, G., Gaglio, S., Re, G.L. and Urso, A. (2004) A random neural network for the dynamic multicast problem.WSEASTrans. Comput., 3, 1545-1550.
    • (2004) WSEASTrans Comput. , vol.3 , pp. 1545-1550
    • Aiello, G.1    Gaglio, S.2    Re, G.L.3    Urso, A.4
  • 43
    • 34247172193 scopus 로고    scopus 로고
    • A GRASP algorithm with RNN based local search for designing a WAN access network
    • Cancela, H., Robledo, F. and Rubino, G. (2004) A GRASP algorithm with RNN based local search for designing a WAN access network. Electron. Notes Discrete Math., 18, 59-65.
    • (2004) Electron. Notes Discrete Math. , vol.18 , pp. 59-65
    • Cancela, H.1    Robledo, F.2    Rubino, G.3
  • 44
    • 0001998268 scopus 로고
    • A qualitative comparison of neural network models applied to the vertex covering problem
    • Ghanwani, A. (1994)A qualitative comparison of neural network models applied to the vertex covering problem. Turk. J. Electr. Eng. Comput. Sci., 2, 11-18.
    • (1994) Turk. J. Electr. Eng. Comput. Sci. , vol.2 , pp. 11-18
    • Ghanwani, A.1
  • 45
    • 77649327298 scopus 로고
    • Combinatorial optimization by random neural network model-Application to the independent set problem
    • Brighton, England, September 4-7. North-Holland, Amsterdam
    • Pekergin, F. (1992) Combinatorial optimization by random neural network model-Application to the independent set problem. Int. Conf. Artificial Neural Networks (ICANN'92), Brighton, England, September 4-7, pp. 437-440. North-Holland, Amsterdam.
    • (1992) Int. Conf. Artificial Neural Networks (ICANN'92) , pp. 437-440
    • Pekergin, F.1
  • 46
    • 0010357963 scopus 로고
    • Dynamical random neural network approach to the traveling salesman problem
    • Gelenbe, E.,Koubi,V. and Pekergin, F. (1994) Dynamical random neural network approach to the traveling salesman problem. Turk. J. Electr. Eng. Comput. Sci., 2, 1-10.
    • (1994) Turk. J. Electr. Eng. Comput. Sci. , vol.2 , pp. 1-10
    • Gelenbe, E.1    Koubi, V.2    Pekergin, F.3
  • 47
    • 25144514398 scopus 로고    scopus 로고
    • Dynamical random neural network approach to a problem of optimal resource allocation
    • Barcelona, Spain, June 8-10. Springer, Berlin
    • Zhong,Y., Sun, D. andWu, J. (2005) Dynamical Random Neural NetworkApproach to a Problem of Optimal Resource Allocation. Proc. 8th Int.Work-Conf. Artificial Neural Networks, Barcelona, Spain, June 8-10, pp. 1157-1163. Springer, Berlin.
    • (2005) Proc. 8th Int.Work-Conf. Artificial Neural Networks , pp. 1157-1163
    • Zhong, Y.1    Sun, D.2    Wu, J.3
  • 49
    • 0032100227 scopus 로고    scopus 로고
    • Definition of an energy function for the random neural to solve optimization problems
    • Aguilar, J. (1998) Definition of an energy function for the random neural to solve optimization problems. Neural Netw., 11, 731-737.
    • (1998) Neural Netw. , vol.11 , pp. 731-737
    • Aguilar, J.1
  • 50
    • 0030721335 scopus 로고    scopus 로고
    • A Digital neuron realization for the random neural network model
    • Houston, TX, USA, June 09-12. IEEE, Piscataway, NJ
    • Cerkez, C., Aybay, I. and Halici, U. (1997) A Digital Neuron Realization for the Random Neural Network Model. Proc. Int. Conf. Neural Networks, Houston, TX, USA, June 09-12, pp. 1000-1004. IEEE, Piscataway, NJ.
    • (1997) Proc. Int. Conf. Neural Networks , pp. 1000-1004
    • Cerkez, C.1    Aybay, I.2    Halici, U.3
  • 51
    • 0033686123 scopus 로고    scopus 로고
    • Analog hardware implementation of the random neural network model
    • Como, Italy, July 24-27. IEEE Computer Society, Los Alamitos, CA
    • Abdelbaki, H., Gelenbe, E. and El-Khamy, S. (2000) Analog Hardware Implementation of the Random Neural Network Model. Proc. IEEE/INNS/ENNS Int. Joint Conf. Neural Networks (IJCNN 2000), Como, Italy, July 24-27, pp. 197-201. IEEE Computer Society, Los Alamitos, CA.
    • (2000) Proc. IEEE/INNS/ENNS Int. Joint Conf. Neural Networks (IJCNN 2000) , pp. 197-201
    • Abdelbaki, H.1    Gelenbe, E.2    El-Khamy, S.3
  • 52
    • 0242611597 scopus 로고    scopus 로고
    • Design and implementation of a random neural network routing engine
    • Kocak, T., Seeber, J. and Terzioglu, H. (2003) Design and implementation of a random neural network routing engine. IEEE Trans. Neural Netw., 14, 1128-1143.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , pp. 1128-1143
    • Kocak, T.1    Seeber, J.2    Terzioglu, H.3
  • 53
    • 53849131654 scopus 로고    scopus 로고
    • Reduced complexity algorithms for cognitive packet network routers
    • Hey, L.A. (2008) Reduced complexity algorithms for cognitive packet network routers. Comput. Commun., 31, 3822-3830.
    • (2008) Comput. Commun. , vol.31 , pp. 3822-3830
    • Hey, L.A.1
  • 56
    • 0032762126 scopus 로고    scopus 로고
    • Function approximation with spiked random networks
    • Gelenbe, E., Mao, Z.-H. and Li, Y.-D. (1999) Function approximation with spiked random networks. IEEETrans. Neural Netw., 10, 3-9.
    • (1999) IEEETrans. Neural Netw. , vol.10 , pp. 3-9
    • Gelenbe, E.1    Mao, Z.-H.2    Li, Y.-D.3
  • 57
    • 33746479275 scopus 로고    scopus 로고
    • Function approximation by random neural networks with a bounded number of layers
    • Gelenbe, E., Mao, Z.-H. and Li, Y.-D. (2004) Function approximation by random neural networks with a bounded number of layers. J. Differ. Equ. Dyn. Syst., 12, 143-170.
    • (2004) J. Differ. Equ. Dyn. Syst. , vol.12 , pp. 143-170
    • Gelenbe, E.1    Mao, Z.-H.2    Li, Y.-D.3
  • 60
    • 0001366019 scopus 로고
    • Parallel algorithm for colour texture generation using the random neural network model
    • Atalay, V. and Gelenbe, E. (1992) Parallel algorithm for colour texture generation using the random neural network model. Int. J. Pattern Recognit. Artif. Intell., 6, 437-446.
    • (1992) Int. J. Pattern Recognit. Artif. Intell. , vol.6 , pp. 437-446
    • Atalay, V.1    Gelenbe, E.2
  • 61
    • 33746488814 scopus 로고    scopus 로고
    • Texture classification and retrieval using random neural network model
    • Teke,A. and Atalay,V. (2006) Texture classification and retrieval using random neural network model. Comput. Manage. Sci., 3, 193-205.
    • (2006) Comput. Manage. Sci. , vol.3 , pp. 193-205
    • Teke, A.1    Atalay, V.2
  • 62
    • 0030270952 scopus 로고    scopus 로고
    • Neural network methods for volumetric magnetic resonance imaging of the human brain
    • Gelenbe, E., Feng, T. and Krishnan, K.R.R. (1996) Neural network methods for volumetric magnetic resonance imaging of the human brain. Proc. IEEE, 84, 1488-1496.
    • (1996) Proc. IEEE , vol.84 , pp. 1488-1496
    • Gelenbe, E.1    Feng, T.2    Krishnan, K.R.R.3
  • 63
    • 33846918931 scopus 로고    scopus 로고
    • Image segmentation based on random neural network model and gabor filters
    • Shanghai, China, September 1-4. IEEE, Piscataway, NJ
    • Lu, R. and Shen,Y. (2005) Image Segmentation Based onRandom Neural Network Model and Gabor Filters. Proc. 27th Annual Int. Conf. Engineering in Medicine and Biology Society, Shanghai, China, September 1-4, pp. 6464-6467. IEEE, Piscataway, NJ.
    • (2005) Proc. 27th Annual Int. Conf. Engineering in Medicine and Biology Society , pp. 6464-6467
    • Lu, R.1    Shen, Y.2
  • 65
    • 17544389864 scopus 로고    scopus 로고
    • Survey of random neural network applications
    • Bakircioglu, H. and Kocak, T. (2000) Survey of random neural network applications. Eur. J. Oper. Res., 126, 319-330.
    • (2000) Eur. J. Oper. Res. , vol.126 , pp. 319-330
    • Bakircioglu, H.1    Kocak, T.2
  • 67
    • 0000080129 scopus 로고    scopus 로고
    • Traffic and video quality in adaptive neural compression
    • Gelenbe, E., Cramer, C., Sungur, M. and Gelenbe, P. (1996) Traffic and video quality in adaptive neural compression. Multimedia Syst., 4, 357-369.
    • (1996) Multimedia Syst. , vol.4 , pp. 357-369
    • Gelenbe, E.1    Cramer, C.2    Sungur, M.3    Gelenbe, P.4
  • 68
    • 0030270532 scopus 로고    scopus 로고
    • Low bit rate video compression with neural networks and temporal subsampling
    • Cramer, C., Gelenbe, E. and Bakircioglu, H. (1996) Low bit rate video compression with neural networks and temporal subsampling. Proc. IEEE, 84, 1529-1543.
    • (1996) Proc. IEEE , vol.84 , pp. 1529-1543
    • Cramer, C.1    Gelenbe, E.2    Bakircioglu, H.3
  • 69
    • 0033871374 scopus 로고    scopus 로고
    • Video quality and traffic QoS in learning-based subsampled and receiver-interpolated video sequences
    • Cramer, C. and Gelenbe, E. (2000)Video quality and traffic QoS in learning-based subsampled and receiver-interpolated video sequences. IEEE J. Sel. Areas Commun., 18, 150-167.
    • (2000) IEEE J. Sel. Areas Commun. , vol.18 , pp. 150-167
    • Cramer, C.1    Gelenbe, E.2
  • 70
    • 0035576358 scopus 로고    scopus 로고
    • Measurement and performance of a cognitive packet network
    • Gelenbe, E., Lent, R. and Xu, Z. (2001) Measurement and performance of a cognitive packet network. Comput. Netw., 37, 691-791.
    • (2001) Comput. Netw. , vol.37 , pp. 691-791
    • Gelenbe, E.1    Lent, R.2    Xu, Z.3
  • 71
    • 0035480143 scopus 로고    scopus 로고
    • Design and performance of cognitive packet networks
    • Gelenbe, E., Lent, R. and Xu, Z. (2001) Design and performance of cognitive packet networks. Perform. Eval., 46, 155-176.
    • (2001) Perform. Eval. , vol.46 , pp. 155-176
    • Gelenbe, E.1    Lent, R.2    Xu, Z.3
  • 72
    • 21244434788 scopus 로고    scopus 로고
    • Self-aware networks and QoS
    • Gelenbe, E., Lent, R. and Nunez, A. (2004) Self-aware networks and QoS. Proc. IEEE, 92, 1478-1489.
    • (2004) Proc. IEEE , vol.92 , pp. 1478-1489
    • Gelenbe, E.1    Lent, R.2    Nunez, A.3
  • 74
    • 2342526288 scopus 로고    scopus 로고
    • Sensible decisions based on QoS
    • Gelenbe, E. (2003) Sensible decisions based on QoS. Comput. Manage. Sci., 1, 1-14.
    • (2003) Comput. Manage. Sci. , vol.1 , pp. 1-14
    • Gelenbe, E.1
  • 75
    • 7744225360 scopus 로고    scopus 로고
    • Power-aware ad hoc cognitive packet networks
    • Gelenbe, E. and Lent, R. (2004) Power-aware ad hoc cognitive packet networks. Ad Hoc Netw. J., 2, 205-216.
    • (2004) Ad Hoc Netw. J. , vol.2 , pp. 205-216
    • Gelenbe, E.1    Lent, R.2
  • 76
    • 51149122339 scopus 로고    scopus 로고
    • Power aware smart routing in wireless sensor networks
    • Krakow, Poland, April 28-30. IEEE, Piscataway, NJ
    • Hey, L. (2008) Power Aware Smart Routing in Wireless Sensor Networks. Proc. Conf. Next Generation Internet Networks, Krakow, Poland, April 28-30, pp. 195-202. IEEE, Piscataway, NJ.
    • (2008) Proc. Conf. Next Generation Internet Networks , pp. 195-202
    • Hey, L.1
  • 77
    • 33947433606 scopus 로고    scopus 로고
    • Users and services in intelligent networks
    • Gelenbe, E. (2006) Users and services in intelligent networks. Proc. IEE (ITS), 153, 213-220.
    • (2006) Proc. IEE (ITS) , vol.153 , pp. 213-220
    • Gelenbe, E.1
  • 78
    • 35648969617 scopus 로고    scopus 로고
    • A denial of service detector based on maximum likelihood detection and the random neural network
    • Oke, G. and Loukas, G. (2007) A denial of service detector based on maximum likelihood detection and the random neural network. Comp. J., 50, 717-727.
    • (2007) Comp. J. , vol.50 , pp. 717-727
    • Oke, G.1    Loukas, G.2
  • 79
    • 0036995754 scopus 로고    scopus 로고
    • A study of real-time packet video quality using random neural networks
    • Mohamed, S. and Rubino, G. (2002)A study of real-time packet video quality using random neural networks. IEEETrans. Circuits Syst. Video Technol., 12, 1071-1083.
    • (2002) IEEETrans. Circuits Syst. Video Technol. , vol.12 , pp. 1071-1083
    • Mohamed, S.1    Rubino, G.2
  • 80
    • 2342628532 scopus 로고    scopus 로고
    • Performance evaluation of real-time speech through a packet network: A random neural networks-based approach
    • Mohamed, S., Rubino, G. and Varela, M. (2004) Performance evaluation of real-time speech through a packet network: a random neural networks-based approach. Perform. Eval., 57, 141-161.
    • (2004) Perform. Eval. , vol.57 , pp. 141-161
    • Mohamed, S.1    Rubino, G.2    Varela, M.3
  • 81
    • 33644919658 scopus 로고    scopus 로고
    • Controlling multimedia QoS in the future home network using the PSQA metric
    • Rubino, G., Varela, M. and Bonnin, J. (2006) Controlling multimedia QoS in the future home network using the PSQA metric. Comp. J., 49, 137-155.
    • (2006) Comp. J. , vol.49 , pp. 137-155
    • Rubino, G.1    Varela, M.2    Bonnin, J.3
  • 83
    • 33749847900 scopus 로고    scopus 로고
    • Evaluating users satisfaction in packet networks using random neural networks
    • Athens, Greece, September 10-14. Springer, Berlin
    • Rubino, G., Tirilly, P. and Varela, M. (2006) Evaluating Users Satisfaction in Packet Networks Using Random Neural Networks. Proc. 16th Int. Conf. Artificial Neural Networks (ICANN 2006), Athens, Greece, September 10-14, pp. 303-312. Springer, Berlin.
    • (2006) Proc. 16th Int. Conf. Artificial Neural Networks (ICANN 2006) , pp. 303-312
    • Rubino, G.1    Tirilly, P.2    Varela, M.3
  • 84
    • 0028744873 scopus 로고
    • Call Admission control in atm networks with the random neural network
    • Orlando, FL, USA, June 28-July 2. IEEE, Piscataway, NJ
    • Aussem, A. (1994) Call Admission Control in ATM Networks with the Random Neural Network. Proc. IEEE Int. Conf. Neural Networks, Orlando, FL, USA, June 28-July 2, pp. 2482-2487. IEEE, Piscataway, NJ.
    • (1994) Proc. IEEE Int. Conf. Neural Networks , pp. 2482-2487
    • Aussem, A.1
  • 85
    • 0034675405 scopus 로고    scopus 로고
    • On G-networks and resource allocation in multimedia systems
    • Gelenbe, E. and Shachnai, H. (2000) On G-networks and resource allocation in multimedia systems. Eur. J. Oper. Res., 126, 308-318.
    • (2000) Eur. J. Oper. Res. , vol.126 , pp. 308-318
    • Gelenbe, E.1    Shachnai, H.2
  • 86
    • 0000997490 scopus 로고    scopus 로고
    • Simulation with learning agents
    • Gelenbe, E., Seref, E. and Xu, Z. (2001) Simulation with learning agents. Proc. IEEE, 89, 148-157.
    • (2001) Proc. IEEE , vol.89 , pp. 148-157
    • Gelenbe, E.1    Seref, E.2    Xu, Z.3
  • 87
    • 8344283557 scopus 로고    scopus 로고
    • Simulating autonomous agents in augmented reality
    • Gelenbe, E., Hussain, K. and Kaptan, V. (2005) Simulating autonomous agents in augmented reality. J. Syst. Softw., 74, 255-268.
    • (2005) J. Syst. Softw. , vol.74 , pp. 255-268
    • Gelenbe, E.1    Hussain, K.2    Kaptan, V.3
  • 88
    • 0026899078 scopus 로고
    • Pictorial informationretrieval using the random neural network
    • Stafylopatis, A. and Likas, A. (1992) Pictorial informationretrieval using the random neural network. IEEE Trans. Softw. Eng., 18, 590-600.
    • (1992) IEEE Trans. Softw. Eng. , vol.18 , pp. 590-600
    • Stafylopatis, A.1    Likas, A.2
  • 89
    • 0342832251 scopus 로고    scopus 로고
    • High capacity associative memory based on the random Neural Network model
    • Likas, A. and Stafylopatis, A. (1996) High capacity associative memory based on the random Neural Network model. Int. J. Pattern Recognit. Artif. Intell., 10, 919-937.
    • (1996) Int. J. Pattern Recognit. Artif. Intell. , vol.10 , pp. 919-937
    • Likas, A.1    Stafylopatis, A.2
  • 90
    • 0035251340 scopus 로고    scopus 로고
    • Learning algorithm and retrieval process for the multiple classes random neural network model
    • Aguilar, J. (2001) Learning algorithm and retrieval process for the multiple classes random neural network model. Neural Process. Lett., 13, 81-91.
    • (2001) Neural Process. Lett. , vol.13 , pp. 81-91
    • Aguilar, J.1
  • 92
    • 77953781779 scopus 로고    scopus 로고
    • Laser intensity vehicle classification system based on random neural network
    • Kennesaw, Georgia, Alabama, USA, March 18-19. ACM, NewYork
    • Hussain, K. and Moussa, G.S. (2005) Laser Intensity Vehicle Classification System Based on Random Neural Network. Proc. 43rd Annual Southeast Regional Conf., Kennesaw, Georgia, Alabama, USA, March 18-19, pp. 31-35. ACM, NewYork.
    • (2005) Proc. 43rd Annual Southeast Regional Conf. , pp. 31-35
    • Hussain, K.1    Moussa, G.S.2
  • 93
    • 3142656045 scopus 로고    scopus 로고
    • Wafer surface reconstruction from top-down scanning electron microscope images
    • Gelenbe, E. and Kocak, T. (2004) Wafer surface reconstruction from top-down scanning electron microscope images. Microelctron Eng., 75, 216-233.
    • (2004) Microelctron Eng. , vol.75 , pp. 216-233
    • Gelenbe, E.1    Kocak, T.2
  • 94
    • 0033308531 scopus 로고    scopus 로고
    • Matched neural filters for emi based mine detection
    • Washington, DC, July 10-16. IEEE, Piscataway, NJ
    • Abdelbaki, H., Gelenbe, E. and Kocak, T. (1999) Matched Neural Filters for EMI Based Mine Detection. Proc. Int. Joint Conf. Neural Networks (IJCNN 99), Washington, DC, July 10-16, pp. 3236-3240. IEEE, Piscataway, NJ.
    • (1999) Proc. Int. Joint Conf. Neural Networks (IJCNN 99) , pp. 3236-3240
    • Abdelbaki, H.1    Gelenbe, E.2    Kocak, T.3
  • 95
    • 51349159124 scopus 로고    scopus 로고
    • Neural algorithms and energy measures for EMI based mine detection
    • Abdelbaki, H., Gelenbe, E. and Kocak, T. (2005) Neural algorithms and energy measures for EMI based mine detection. J. Differ. Equ. Dyn. Sys., 13, 63-86.
    • (2005) J. Differ. Equ. Dyn. Sys. , vol.13 , pp. 63-86
    • Abdelbaki, H.1    Gelenbe, E.2    Kocak, T.3
  • 97
    • 0000409689 scopus 로고    scopus 로고
    • Autonomous search for mines
    • Gelenbe, E. and Cao, Y. (1998) Autonomous search for mines. Eur. J. Oper. Res., 108, 319-333.
    • (1998) Eur. J. Oper. Res. , vol.108 , pp. 319-333
    • Gelenbe, E.1    Cao, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.