메뉴 건너뛰기




Volumn 2, Issue 5, 2010, Pages 855-862

Derivation of cancer diagnostic and prognostic signatures from gene expression data

Author keywords

[No Author keywords available]

Indexed keywords

BREAST CANCER; CANCER DIAGNOSIS; CANCER GRADING; CANCER GROWTH; CANCER RECURRENCE; CANCER RISK; CANCER SURVIVAL; DISTANT METASTASIS; GENE EXPRESSION PROFILING; GENE IDENTIFICATION; GENETIC ALGORITHM; GENETIC MODEL; HIGH THROUGHPUT SCREENING; HUMAN; INTERMETHOD COMPARISON; MICROARRAY ANALYSIS; PREDICTION; PROGNOSIS; PROSTATE CANCER; PROSTATECTOMY; REVIEW; SENSITIVITY AND SPECIFICITY; BREAST TUMOR; DNA MICROARRAY; GENE EXPRESSION REGULATION; GENETICS; MALE; METHODOLOGY; NEOPLASM; PROSTATE TUMOR;

EID: 79952526514     PISSN: 17576180     EISSN: 17576199     Source Type: Journal    
DOI: 10.4155/bio.10.35     Document Type: Review
Times cited : (17)

References (61)
  • 1
    • 71249163835 scopus 로고    scopus 로고
    • Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online adjuvant! program: A hospital-based retrospective cohort study
    • Mook S, Schmidt MK, Rutgers EJ et al. Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! program: a hospital-based retrospective cohort study. Lancet Oncol. 10(11), 1070-1076 (2009).
    • (2009) Lancet Oncol. , vol.10 , Issue.11 , pp. 1070-1076
    • Mook, S.1    Schmidt, M.K.2    Rutgers, E.J.3
  • 3
    • 0034812859 scopus 로고    scopus 로고
    • Towards a novel classification of human malignancies based on gene expression patterns
    • DOI 10.1002/path.889
    • Alizadeh AA, Ross DT, Perou CM, Van de Rijn M. Towards a novel classification of human malignancies based on gene expression patterns. J. Pathol. 195(1), 41-52 (2001). (Pubitemid 32899044)
    • (2001) Journal of Pathology , vol.195 , Issue.1 , pp. 41-52
    • Alizadeh, A.A.1    Ross, D.T.2    Perou, C.M.3    Van De Rijn, M.4
  • 6
    • 0034680102 scopus 로고    scopus 로고
    • Molecular portraits of human breast tumours
    • Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature 406(6797), 747-752 (2000).
    • (2000) Nature , vol.406 , Issue.6797 , pp. 747-752
    • Perou, C.M.1    Sorlie, T.2    Eisen, M.B.3
  • 7
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531-537 (1999).
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 11
    • 22244447065 scopus 로고    scopus 로고
    • Integration of gene expression profiling and clinical variables to predict prostate carcinoma recurrence after radical prostatectomy
    • DOI 10.1002/cncr.21157
    • Stephenson AJ, Smith A, Kattan MW et al. Integration of gene expression profiling and clinical variables to predict prostate carcinoma recurrence after radical prostatectomy. Cancer 104(2), 290-298 (2005). (Pubitemid 40993255)
    • (2005) Cancer , vol.104 , Issue.2 , pp. 290-298
    • Stephenson, A.J.1    Smith, A.2    Kattan, M.W.3    Satagopan, J.4    Reuter, V.E.5    Scardino, P.T.6    Gerald, W.L.7
  • 12
    • 0036682002 scopus 로고    scopus 로고
    • Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease
    • Latulippe E, Satagopan J, Smith A et al. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res. 62(15), 4499-4506 (2002). (Pubitemid 34827314)
    • (2002) Cancer Research , vol.62 , Issue.15 , pp. 4499-4506
    • LaTulippe, E.1    Satagopan, J.2    Smith, A.3    Scher, H.4    Scardino, P.5    Reuter, V.6    Gerald, W.L.7
  • 16
    • 0035806484 scopus 로고    scopus 로고
    • National Institutes of Health consensus development conference statement: Adjuvant therapy for breast cancer november 1-3 2000
    • Eifel P, Axelson JA, Costa J et al. National Institutes of Health consensus development conference statement: adjuvant therapy for breast cancer, november 1-3, 2000. J. Natl Cancer Inst. 93(13), 979-989 (2001).
    • (2001) J. Natl Cancer Inst. , vol.93 , Issue.13 , pp. 979-989
    • Eifel, P.1    Axelson, J.A.2    Costa, J.3
  • 17
    • 33747891871 scopus 로고    scopus 로고
    • Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks
    • Gevaert O, De Smet F, Timmerman D, Moreau Y, De Moor B. Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks. Bioinformatics 22(14), e184-190 (2006).
    • (2006) Bioinformatics , vol.22 , Issue.14
    • Gevaert, O.1    De Smet, F.2    Timmerman, D.3    Moreau, Y.4    De Moor, B.5
  • 19
    • 33644838290 scopus 로고    scopus 로고
    • Molecular forecasting of breast cancer: Time to move forward with clinical testing
    • 721-722; author reply
    • Loi S, Sotiriou C, Buyse M et al. Molecular forecasting of breast cancer: time to move forward with clinical testing. J. Clin. Oncol. 24(4), 721-722; author reply 722-723 (2006).
    • (2006) J. Clin. Oncol. , vol.24 , Issue.4 , pp. 722-723
    • Loi, S.1    Sotiriou, C.2    Buyse, M.3
  • 21
    • 23144442644 scopus 로고    scopus 로고
    • Breast cancer metastasis: Markers and models
    • DOI 10.1038/nrc1670
    • Weigelt B, Peterse JL, Van't Veer LJ. Breast cancer metastasis: markers and models. Nat. Rev. Cancer 5(8), 591-602 (2005). (Pubitemid 41081385)
    • (2005) Nature Reviews Cancer , vol.5 , Issue.8 , pp. 591-602
    • Weigelt, B.1    Peterse, J.L.2    Van't Veer, L.J.3
  • 22
    • 73949136029 scopus 로고    scopus 로고
    • The contribution of gene expression profiling to breast cancer classification prognostication and prediction: A retrospective of the last decade
    • Weigelt B, Baehner FL, Reis-Filho JS. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J. Pathol. 220(2), 263-280 (2010).
    • (2010) J. Pathol. , vol.220 , Issue.2 , pp. 263-280
    • Weigelt, B.1    Baehner, F.L.2    Reis-Filho, J.S.3
  • 23
    • 41649102043 scopus 로고    scopus 로고
    • The cancer biomarker problem
    • DOI 10.1038/nature06913, PII NATURE06913
    • Sawyers CL. The cancer biomarker problem. Nature 452(7187), 548-552 (2008). (Pubitemid 351483368)
    • (2008) Nature , vol.452 , Issue.7187 , pp. 548-552
    • Sawyers, C.L.1
  • 24
    • 28344454000 scopus 로고    scopus 로고
    • Molecular classification and molecular forecasting of breast cancer: Ready for clinical application?
    • DOI 10.1200/JCO.2005.03.3845
    • Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J. Clin. Oncol. 23(29), 7350-7360 (2005). (Pubitemid 46202348)
    • (2005) Journal of Clinical Oncology , vol.23 , Issue.29 , pp. 7350-7360
    • Brenton, J.D.1    Carey, L.A.2    Ahmed, A.3    Caldas, C.4
  • 25
    • 58149330982 scopus 로고    scopus 로고
    • Meta-analysis of gene expression profiles in breast cancer: Toward a unified understandingof breast cancer subtyping and prognosis signatures
    • Wirapati P, Sotiriou C, Kunkel S et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified understandingof breast cancer subtyping and prognosis signatures. Breast Cancer Res. 10(4), R65 (2008).
    • (2008) Breast Cancer Res. , vol.10 , Issue.4
    • Wirapati, P.1    Sotiriou, C.2    Kunkel, S.3
  • 26
    • 48249110665 scopus 로고    scopus 로고
    • Microarray-based classification and clinical predictors: On combined classifiers and additional predictive value
    • Boulesteix Al, Porzelius C, Daumer M. Microarray-based classification and clinical predictors: on combined classifiers and additional predictive value. Bioinformatics 24(15), 1698-1706 (2008).
    • (2008) Bioinformatics , vol.24 , Issue.15 , pp. 1698-1706
    • Boulesteix, A.L.1    Porzelius, C.2    Daumer, M.3
  • 27
    • 33845881963 scopus 로고    scopus 로고
    • Improved breast cancer prognosis through the combination of clinical and genetic markers
    • DOI 10.1093/bioinformatics/btl543
    • Sun Y, Goodison S, Li J, Liu L, Farmerie W. Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics 23(1), 30-37 (2007). (Pubitemid 46017852)
    • (2007) Bioinformatics , vol.23 , Issue.1 , pp. 30-37
    • Sun, Y.1    Goodison, S.2    Li, J.3    Liu, L.4    Farmerie, W.5
  • 28
    • 0018491795 scopus 로고
    • A problem of dimensionality: A simple example
    • Trunk GV. A problem of dimensionality: a simple example. IEEE Trans. Pattern Anal. Mach. Intell. 1(3), 306-307 (1979).
    • (1979) IEEE Trans. Pattern Anal. Mach. Intell. , vol.1 , Issue.3 , pp. 306-307
    • Trunk, G.V.1
  • 29
    • 37549029793 scopus 로고    scopus 로고
    • The properties of high-dimensional data spaces: Implications for exploring gene and protein expression data
    • Clarke R, Ressom HW, Wang A et al. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat. Rev. Cancer 8(1), 37-49 (2008).
    • (2008) Nat. Rev. Cancer , vol.8 , Issue.1 , pp. 37-49
    • Clarke, R.1    Ressom, H.W.2    Wang, A.3
  • 30
    • 0037441446 scopus 로고    scopus 로고
    • A statistical perspective on gene expression data analysis
    • DOI 10.1002/sim.1350
    • Satagopan JM, Panageas KS. A statistical perspective on (Pubitemid 36163599)
    • (2003) Statistics in Medicine , vol.22 , Issue.3 , pp. 481-499
    • Satagopan, J.M.1    Panageas, K.S.2
  • 31
    • 29244448340 scopus 로고    scopus 로고
    • Microarray data analysis: From disarray to consolidation and consensus
    • DOI 10.1038/nrg1749
    • Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nat. Rev. Genet. 7(1), 55-65 (2006). (Pubitemid 41828948)
    • (2006) Nature Reviews Genetics , vol.7 , Issue.1 , pp. 55-65
    • Allison, D.B.1    Cui, X.2    Page, G.P.3    Sabripour, M.4
  • 32
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed T. Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97(457), 77-87 (2002).
    • (2002) J. Am. Stat. Assoc. , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 33
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • Kohavi R, John G. Wrappers for feature subset selection. Artif. Intell. 97(1-2), 273-324 (1997). (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 34
    • 47049102021 scopus 로고    scopus 로고
    • Information-theoretic feature selection in microarray data using variable complementarity
    • Meyer PE, Schretter C, Bontempi G. Information-theoretic feature selection in microarray data using variable complementarity. IEEE J. Sel. Top Signal Process 2(3), 261-274 (2008).
    • (2008) IEEE J. Sel. Top Signal Process , vol.2 , Issue.3 , pp. 261-274
    • Meyer, P.E.1    Schretter, C.2    Bontempi, G.3
  • 35
    • 33846647359 scopus 로고    scopus 로고
    • Bivariate variable selection for classification problem
    • University of California-Berkeley CA USA
    • Ng V, Breiman L. Bivariate variable selection for classification problem. Technical Report. Department of Statistics, University of California-Berkeley, CA, USA (2005).
    • (2005) Technical Report. Department of Statistics
    • Ng, V.1    Breiman, L.2
  • 36
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classfication methods for tissue classification based on gene expression
    • DOI 10.1093/bioinformatics/bth267
    • Li T, Zhang C, Ogihara M. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20(15), 2429-2437 (2004). (Pubitemid 39429915)
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 37
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323-2326 (2000). (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 38
    • 67649974951 scopus 로고    scopus 로고
    • Feature extraction through local learning
    • Sun Y, Wu D. Feature extraction through local learning. Stat. Anal. Data Mining 2(1), 34-47 (2009).
    • (2009) Stat. Anal. Data Mining , vol.2 , Issue.1 , pp. 34-47
    • Sun, Y.1    Wu, D.2
  • 40
    • 33845910480 scopus 로고    scopus 로고
    • Comparing prognostic markers for metastases in breast cancer using artificial neural networks
    • Lund University Sweden
    • Ritz C. Comparing prognostic markers for metastases in breast cancer using artificial neural networks. Masters Thesis. Lund University, Sweden (2003).
    • (2003) Masters Thesis.
    • Ritz, C.1
  • 41
    • 4143134783 scopus 로고    scopus 로고
    • Finding predictive gene groups from microarray data
    • DOI 10.1016/j.jmva.2004.02.012, Multivariate Methods in Genomic Data Analysis
    • Dettling M, Bühlmann P. Finding predictive gene groups from microarray data. J. Multivar. Anal. 90(1), 106-131 (2004). (Pubitemid 41137009)
    • (2004) Journal of Multivariate Analysis , vol.90 , Issue.SPEC. ISS. 1 , pp. 106-131
    • Dettling, M.1    Buhlmann, P.2
  • 42
    • 74849108615 scopus 로고    scopus 로고
    • Derivation of molecular signatures for breast cancer recurrence prediction using a two-way validation approach
    • Sun Y, Urquidi V, Goodison S. Derivation of molecular signatures for breast cancer recurrence prediction using a two-way validation approach. Breast Cancer Res. Treat. 119(3), 593-599 (2010).
    • (2010) Breast Cancer Res. Treat. , vol.119 , Issue.3 , pp. 593-599
    • Sun, Y.1    Urquidi, V.2    Goodison, S.3
  • 43
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1-3), 389-422 (2002). (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 44
    • 14344249889 scopus 로고    scopus 로고
    • Feature selection L1 vs L2 regularization and rotational invariance
    • ACM International Conference Proceeding Series
    • Ng A. Feature selection, L1 vs L2 regularization, and rotational invariance. Proceedings of the 21st International Conference on Machine Learning. ACM International Conference Proceeding Series 69, 78 (2004).
    • (2004) Proceedings of the 21st International Conference on Machine Learning , vol.69 , pp. 78
    • Ng, A.1
  • 45
    • 58049211939 scopus 로고    scopus 로고
    • The wisdom of the commons: Ensemble tree classifiers for prostate cancer prognosis
    • Koziol JA, Feng AC, Jia Z et al. The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis. Bioinformatics 25(1), 54-60 (2009).
    • (2009) Bioinformatics , vol.25 , Issue.1 , pp. 54-60
    • Koziol, J.A.1    Feng, A.C.2    Jia, Z.3
  • 47
    • 67650661623 scopus 로고    scopus 로고
    • Online feature selection algorithm with bayesian l-1 regularization
    • Proceedings of 13th Pacific- Asia Conference on Knowledge Discovery and Data Mining PAKDD09
    • Cai Y, Sun Y, Li J, Goodison S. Online feature selection algorithm with bayesian l-1 regularization. Proceedings of 13th Pacific- Asia Conference on Knowledge Discovery and Data Mining (PAKDD09).Lecture Notes In Artificial Intelligence 5476, 401-413 (2009).
    • (2009) Lecture Notes In Artificial Intelligence , vol.5476 , pp. 401-413
    • Cai, Y.1    Sun, Y.2    Li, J.3    Goodison, S.4
  • 48
    • 67649935641 scopus 로고    scopus 로고
    • Genomic approaches to outcome prediction in prostate cancer
    • Febbo PG. Genomic approaches to outcome prediction in prostate cancer. Cancer 115(13 Suppl.), 3046-3057 (2009).
    • (2009) Cancer , vol.115 , Issue.13 , pp. 3046-3057
    • Febbo, P.G.1
  • 52
    • 0032950295 scopus 로고    scopus 로고
    • Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer
    • Kattan MW, Wheeler TM, Scardino PT. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J. Clin. Oncol. 17(5), 1499-1507 (1999). (Pubitemid 29220858)
    • (1999) Journal of Clinical Oncology , vol.17 , Issue.5 , pp. 1499-1507
    • Kattan, M.W.1    Wheeler, T.M.2    Scardino, P.T.3
  • 53
    • 27244432751 scopus 로고    scopus 로고
    • Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy
    • Stephenson AJ, Scardino PT, Eastham JA et al. Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J. Clin. Oncol. 23(28), 7005-7012 (2005).
    • (2005) J. Clin. Oncol. , vol.23 , Issue.28 , pp. 7005-7012
    • Stephenson, A.J.1    Scardino, P.T.2    Eastham, J.A.3
  • 54
    • 67449132037 scopus 로고    scopus 로고
    • Optimizing molecular signatures for predicting prostate cancer recurrence
    • Sun Y, Goodison S. Optimizing molecular signatures for predicting prostate cancer recurrence. Prostate 69(10), 1119-1127 (2009).
    • (2009) Prostate , vol.69 , Issue.10 , pp. 1119-1127
    • Sun, Y.1    Goodison, S.2
  • 59
    • 84896378977 scopus 로고    scopus 로고
    • Pathway based feature selection algorithm for cancer microarray data
    • 10.1155/2009/532989 Epub ahead of print
    • Bandyopadhyay N, Kahveci T, Ranka S, Sun Y, Goodison S. Pathway based feature selection algorithm for cancer microarray data. Adv. Bioinformatics DOI: 10.1155/2009/532989 (2010) (Epub ahead of print).
    • (2010) Adv. Bioinformatics
    • Bandyopadhyay, N.1    Kahveci, T.2    Ranka, S.3    Sun, Y.4    Goodison, S.5
  • 60
    • 46249130709 scopus 로고    scopus 로고
    • The beginning of the end for microarrays
    • Shendure J. The beginning of the end for microarrays? Nat. Methods 5(7), 585-587 (2008).
    • (2008) Nat. Methods , vol.5 , Issue.7 , pp. 585-587
    • Shendure, J.1
  • 61
    • 33645825183 scopus 로고    scopus 로고
    • Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
    • USA
    • Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl Acad. Sci. USA 103(15), 5923-5928 (2006).
    • (2006) Proc. Natl Acad. Sci. , vol.103 , Issue.15 , pp. 5923-5928
    • Ein-Dor, L.1    Zuk, O.2    Domany, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.