-
1
-
-
71249163835
-
Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online adjuvant! program: A hospital-based retrospective cohort study
-
Mook S, Schmidt MK, Rutgers EJ et al. Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! program: a hospital-based retrospective cohort study. Lancet Oncol. 10(11), 1070-1076 (2009).
-
(2009)
Lancet Oncol.
, vol.10
, Issue.11
, pp. 1070-1076
-
-
Mook, S.1
Schmidt, M.K.2
Rutgers, E.J.3
-
2
-
-
0034598746
-
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
-
DOI 10.1038/35000501
-
Alizadeh AA, Eisen MB, Davis RE et al. Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503-511 (2000). (Pubitemid 30082188)
-
(2000)
Nature
, vol.403
, Issue.6769
, pp. 503-511
-
-
Alizadeh, A.A.1
Elsen, M.B.2
Davis, R.E.3
Ma, Ch.L.4
Lossos, I.S.5
Rosenwald, A.6
Boldrick, J.C.7
Sabet, H.8
Tran, T.9
Yu, X.10
Powell, J.I.11
Yang, L.12
Maru, G.E.13
Moore, T.14
Hudson Jr., J.15
Lu, L.16
Lewis, D.B.17
Tibshirani, R.18
Sherlock, G.19
Chan, W.C.20
Greiner, T.C.21
Weisenburger, D.D.22
Armitage, J.O.23
Warnke, R.24
Levy, R.25
Wilson, W.26
Grever, M.R.27
Byrd, J.C.28
Botstein, D.29
Brown, P.O.30
Staudt, L.M.31
more..
-
3
-
-
0034812859
-
Towards a novel classification of human malignancies based on gene expression patterns
-
DOI 10.1002/path.889
-
Alizadeh AA, Ross DT, Perou CM, Van de Rijn M. Towards a novel classification of human malignancies based on gene expression patterns. J. Pathol. 195(1), 41-52 (2001). (Pubitemid 32899044)
-
(2001)
Journal of Pathology
, vol.195
, Issue.1
, pp. 41-52
-
-
Alizadeh, A.A.1
Ross, D.T.2
Perou, C.M.3
Van De Rijn, M.4
-
4
-
-
0042838307
-
Breast cancer classification and prognosis based on gene expression profiles from a population-based study
-
DOI 10.1073/pnas.1732912100
-
Sotiriou C, Neo SY, McShane LM et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. USA 100(18), 10393-10398 (2003). (Pubitemid 37071889)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.18
, pp. 10393-10398
-
-
Sotiriou, C.1
Neo, S.-Y.2
McShane, L.M.3
Korn, E.L.4
Long, P.M.5
Jazaeri, A.6
Martiat, P.7
Fox, S.B.8
Harris, A.L.9
Liu, E.T.10
-
5
-
-
0037478605
-
Repeated observation of breast tumor subtypes in independent gene expression data sets
-
DOI 10.1073/pnas.0932692100
-
Sorlie T, Tibshirani R, Parker J et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100(14), 8418-8423 (2003). (Pubitemid 36842560)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.14
, pp. 8418-8423
-
-
Sorlie, T.1
Tibshirani, R.2
Parker, J.3
Hastie, T.4
Marron, J.S.5
Nobel, A.6
Deng, S.7
Johnsen, H.8
Pesich, R.9
Geisler, S.10
Demeter, J.11
Perou, C.M.12
Lonning, P.E.13
Brown, P.O.14
Borresen-Dale, A.-L.15
Botstein, D.16
-
6
-
-
0034680102
-
Molecular portraits of human breast tumours
-
Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature 406(6797), 747-752 (2000).
-
(2000)
Nature
, vol.406
, Issue.6797
, pp. 747-752
-
-
Perou, C.M.1
Sorlie, T.2
Eisen, M.B.3
-
7
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
Golub TR, Slonim DK, Tamayo P et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531-537 (1999).
-
(1999)
Science
, vol.286
, Issue.5439
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
-
8
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
DOI 10.1038/415530a
-
Van't Veer LJ, Dai H, Van De Vijver MJ et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871), 530-536 (2002). (Pubitemid 34130608)
-
(2002)
Nature
, vol.415
, Issue.6871
, pp. 530-536
-
-
Van't Veer, L.J.1
Dai, H.2
Van De Vijver, M.J.3
He, Y.D.4
Hart, A.A.M.5
Mao, M.6
Peterse, H.L.7
Van Der Kooy, K.8
Marton, M.J.9
Witteveen, A.T.10
Schreiber, G.J.11
Kerkhoven, R.M.12
Roberts, C.13
Linsley, P.S.14
Bernards, R.15
Friend, S.H.16
-
9
-
-
0037137519
-
A gene-expression signature as a predictor of survival in breast cancer
-
DOI 10.1056/NEJMoa021967
-
Van de Vijver MJ, He YD, Van't Veer LJ et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347(25), 1999-2009 (2002). (Pubitemid 35461656)
-
(2002)
New England Journal of Medicine
, vol.347
, Issue.25
, pp. 1999-2009
-
-
Van De Vijver, M.J.1
He, Y.D.2
Van 'T Veer, L.J.3
Dai, H.4
Hart, A.A.M.5
Voskuil, D.W.6
Schreiber, G.J.7
Peterse, J.L.8
Roberts, C.9
Marton, M.J.10
Parrish, M.11
Atsma, D.12
Witteveen, A.13
Glas, A.14
Delahaye, L.15
Van Der Velde, T.16
Bartelink, H.17
Rodenhuis, S.18
Rutgers, E.T.19
Friend, S.H.20
Bernards, R.21
more..
-
10
-
-
19044391072
-
Gene expression correlates of clinical prostate cancer behavior
-
DOI 10.1016/S1535-6108(02)00030-2
-
Singh D, Febbo PG, Ross K et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2), 203-209 (2002). (Pubitemid 41039166)
-
(2002)
Cancer Cell
, vol.1
, Issue.2
, pp. 203-209
-
-
Singh, D.1
Febbo, P.G.2
Ross, K.3
Jackson, D.G.4
Manola, J.5
Ladd, C.6
Tamayo, P.7
Renshaw, A.A.8
D'Amico, A.V.9
Richie, J.P.10
Lander, E.S.11
Loda, M.12
Kantoff, P.W.13
Golub, T.R.14
Sellers, W.R.15
-
11
-
-
22244447065
-
Integration of gene expression profiling and clinical variables to predict prostate carcinoma recurrence after radical prostatectomy
-
DOI 10.1002/cncr.21157
-
Stephenson AJ, Smith A, Kattan MW et al. Integration of gene expression profiling and clinical variables to predict prostate carcinoma recurrence after radical prostatectomy. Cancer 104(2), 290-298 (2005). (Pubitemid 40993255)
-
(2005)
Cancer
, vol.104
, Issue.2
, pp. 290-298
-
-
Stephenson, A.J.1
Smith, A.2
Kattan, M.W.3
Satagopan, J.4
Reuter, V.E.5
Scardino, P.T.6
Gerald, W.L.7
-
12
-
-
0036682002
-
Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease
-
Latulippe E, Satagopan J, Smith A et al. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res. 62(15), 4499-4506 (2002). (Pubitemid 34827314)
-
(2002)
Cancer Research
, vol.62
, Issue.15
, pp. 4499-4506
-
-
LaTulippe, E.1
Satagopan, J.2
Smith, A.3
Scher, H.4
Scardino, P.5
Reuter, V.6
Gerald, W.L.7
-
13
-
-
33748693297
-
Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer
-
DOI 10.1093/jnci/djj329
-
Buyse M, Loi S, Van't Veer L et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J. Natl Cancer Inst. 98(17), 1183-1192 (2006). (Pubitemid 44390989)
-
(2006)
Journal of the National Cancer Institute
, vol.98
, Issue.17
, pp. 1183-1192
-
-
Buyse, M.1
Loi, S.2
Van't Veer, L.3
Viale, G.4
Delorenzi, M.5
Glas, A.M.6
D'Assignies, M.S.7
Bergh, J.8
Lidereau, R.9
Ellis, P.10
Harris, A.11
Bogaerts, J.12
Therasse, P.13
Floore, A.14
Amakrane, M.15
Piette, F.16
Rutgers, E.17
Sotiriou, C.18
Cardoso, F.19
Piccart, M.J.20
Decker, N.21
Straehle, C.22
more..
-
14
-
-
34250652449
-
Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series
-
DOI 10.1158/1078-0432.CCR-06-2765
-
Desmedt C, Piette F, Loi S et al. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the transbig multicenter independent validation series. Clin. Cancer Res. 13(11), 3207-3214 (2007). (Pubitemid 46944903)
-
(2007)
Clinical Cancer Research
, vol.13
, Issue.11
, pp. 3207-3214
-
-
Desmedt, C.1
Piette, F.2
Loi, S.3
Wang, Y.4
Lallemand, F.5
Haibe-Kains, B.6
Viale, G.7
Delorenzi, M.8
Zhang, Y.9
D'Assignies, M.S.10
Bergh, J.11
Lidereau, R.12
Ellis, P.13
Harris, A.L.14
Klijn, J.G.M.15
Foekens, J.A.16
Cardoso, F.17
Piccart, M.J.18
Buyse, M.19
Sotiriou, C.20
more..
-
15
-
-
13844310310
-
Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer
-
DOI 10.1016/S0140-6736(05)17947-1
-
Wang Y, Klijn JG, Zhang Y et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460), 671-679 (2005). (Pubitemid 40260888)
-
(2005)
Lancet
, vol.365
, Issue.9460
, pp. 671-679
-
-
Wang, Y.1
Klijn, J.G.M.2
Zhang, Y.3
Sieuwerts, A.M.4
Look, M.P.5
Yang, F.6
Talantov, D.7
Timmermans, M.8
Meijer-Van Gelder, M.E.9
Yu, J.10
Jatkoe, T.11
Berns, E.M.J.J.12
Atkins, D.13
Foekens, J.A.14
-
16
-
-
0035806484
-
-
National Institutes of Health consensus development conference statement: Adjuvant therapy for breast cancer november 1-3 2000
-
Eifel P, Axelson JA, Costa J et al. National Institutes of Health consensus development conference statement: adjuvant therapy for breast cancer, november 1-3, 2000. J. Natl Cancer Inst. 93(13), 979-989 (2001).
-
(2001)
J. Natl Cancer Inst.
, vol.93
, Issue.13
, pp. 979-989
-
-
Eifel, P.1
Axelson, J.A.2
Costa, J.3
-
17
-
-
33747891871
-
Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks
-
Gevaert O, De Smet F, Timmerman D, Moreau Y, De Moor B. Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks. Bioinformatics 22(14), e184-190 (2006).
-
(2006)
Bioinformatics
, vol.22
, Issue.14
-
-
Gevaert, O.1
De Smet, F.2
Timmerman, D.3
Moreau, Y.4
De Moor, B.5
-
18
-
-
23844549918
-
Breast cancer molecular subtypes respond differently to preoperative chemotherapy
-
DOI 10.1158/1078-0432.CCR-04-2421
-
Rouzier R, Perou CM, Symmans WF et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res. 11(16), 5678-5685 (2005). (Pubitemid 41170290)
-
(2005)
Clinical Cancer Research
, vol.11
, Issue.16
, pp. 5678-5685
-
-
Rouzier, R.1
Perou, C.M.2
Symmans, W.F.3
Ibrahim, N.4
Cristofanilli, M.5
Anderson, K.6
Hess, K.R.7
Stec, J.8
Ayers, M.9
Wagner, P.10
Morandi, P.11
Fan, C.12
Rabiul, I.13
Ross, J.S.14
Hortobagyi, G.N.15
Pusztai, L.16
-
19
-
-
33644838290
-
Molecular forecasting of breast cancer: Time to move forward with clinical testing
-
721-722; author reply
-
Loi S, Sotiriou C, Buyse M et al. Molecular forecasting of breast cancer: time to move forward with clinical testing. J. Clin. Oncol. 24(4), 721-722; author reply 722-723 (2006).
-
(2006)
J. Clin. Oncol.
, vol.24
, Issue.4
, pp. 722-723
-
-
Loi, S.1
Sotiriou, C.2
Buyse, M.3
-
20
-
-
39149123547
-
Clinical application of the 70-gene profile: The MINDACT trial
-
DOI 10.1200/JCO.2007.14.3222
-
Cardoso F, Van't Veer L, Rutgers E, Loi S, Mook S, Piccart-Gebhart MJ. Clinical application of the 70-gene profile: the mindact trial. J. Clin. Oncol. 26(5), 729-735 (2008). (Pubitemid 351264385)
-
(2008)
Journal of Clinical Oncology
, vol.26
, Issue.5
, pp. 729-735
-
-
Cardoso, F.1
Van't Veer, L.2
Rutgers, E.3
Loi, S.4
Mook, S.5
Piccart-Gebhart, M.J.6
-
21
-
-
23144442644
-
Breast cancer metastasis: Markers and models
-
DOI 10.1038/nrc1670
-
Weigelt B, Peterse JL, Van't Veer LJ. Breast cancer metastasis: markers and models. Nat. Rev. Cancer 5(8), 591-602 (2005). (Pubitemid 41081385)
-
(2005)
Nature Reviews Cancer
, vol.5
, Issue.8
, pp. 591-602
-
-
Weigelt, B.1
Peterse, J.L.2
Van't Veer, L.J.3
-
22
-
-
73949136029
-
The contribution of gene expression profiling to breast cancer classification prognostication and prediction: A retrospective of the last decade
-
Weigelt B, Baehner FL, Reis-Filho JS. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J. Pathol. 220(2), 263-280 (2010).
-
(2010)
J. Pathol.
, vol.220
, Issue.2
, pp. 263-280
-
-
Weigelt, B.1
Baehner, F.L.2
Reis-Filho, J.S.3
-
23
-
-
41649102043
-
The cancer biomarker problem
-
DOI 10.1038/nature06913, PII NATURE06913
-
Sawyers CL. The cancer biomarker problem. Nature 452(7187), 548-552 (2008). (Pubitemid 351483368)
-
(2008)
Nature
, vol.452
, Issue.7187
, pp. 548-552
-
-
Sawyers, C.L.1
-
24
-
-
28344454000
-
Molecular classification and molecular forecasting of breast cancer: Ready for clinical application?
-
DOI 10.1200/JCO.2005.03.3845
-
Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J. Clin. Oncol. 23(29), 7350-7360 (2005). (Pubitemid 46202348)
-
(2005)
Journal of Clinical Oncology
, vol.23
, Issue.29
, pp. 7350-7360
-
-
Brenton, J.D.1
Carey, L.A.2
Ahmed, A.3
Caldas, C.4
-
25
-
-
58149330982
-
Meta-analysis of gene expression profiles in breast cancer: Toward a unified understandingof breast cancer subtyping and prognosis signatures
-
Wirapati P, Sotiriou C, Kunkel S et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified understandingof breast cancer subtyping and prognosis signatures. Breast Cancer Res. 10(4), R65 (2008).
-
(2008)
Breast Cancer Res.
, vol.10
, Issue.4
-
-
Wirapati, P.1
Sotiriou, C.2
Kunkel, S.3
-
26
-
-
48249110665
-
Microarray-based classification and clinical predictors: On combined classifiers and additional predictive value
-
Boulesteix Al, Porzelius C, Daumer M. Microarray-based classification and clinical predictors: on combined classifiers and additional predictive value. Bioinformatics 24(15), 1698-1706 (2008).
-
(2008)
Bioinformatics
, vol.24
, Issue.15
, pp. 1698-1706
-
-
Boulesteix, A.L.1
Porzelius, C.2
Daumer, M.3
-
27
-
-
33845881963
-
Improved breast cancer prognosis through the combination of clinical and genetic markers
-
DOI 10.1093/bioinformatics/btl543
-
Sun Y, Goodison S, Li J, Liu L, Farmerie W. Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics 23(1), 30-37 (2007). (Pubitemid 46017852)
-
(2007)
Bioinformatics
, vol.23
, Issue.1
, pp. 30-37
-
-
Sun, Y.1
Goodison, S.2
Li, J.3
Liu, L.4
Farmerie, W.5
-
28
-
-
0018491795
-
A problem of dimensionality: A simple example
-
Trunk GV. A problem of dimensionality: a simple example. IEEE Trans. Pattern Anal. Mach. Intell. 1(3), 306-307 (1979).
-
(1979)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.1
, Issue.3
, pp. 306-307
-
-
Trunk, G.V.1
-
29
-
-
37549029793
-
The properties of high-dimensional data spaces: Implications for exploring gene and protein expression data
-
Clarke R, Ressom HW, Wang A et al. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat. Rev. Cancer 8(1), 37-49 (2008).
-
(2008)
Nat. Rev. Cancer
, vol.8
, Issue.1
, pp. 37-49
-
-
Clarke, R.1
Ressom, H.W.2
Wang, A.3
-
31
-
-
29244448340
-
Microarray data analysis: From disarray to consolidation and consensus
-
DOI 10.1038/nrg1749
-
Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nat. Rev. Genet. 7(1), 55-65 (2006). (Pubitemid 41828948)
-
(2006)
Nature Reviews Genetics
, vol.7
, Issue.1
, pp. 55-65
-
-
Allison, D.B.1
Cui, X.2
Page, G.P.3
Sabripour, M.4
-
32
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
Dudoit S, Fridlyand J, Speed T. Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97(457), 77-87 (2002).
-
(2002)
J. Am. Stat. Assoc.
, vol.97
, Issue.457
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.3
-
33
-
-
0031381525
-
Wrappers for feature subset selection
-
PII S000437029700043X
-
Kohavi R, John G. Wrappers for feature subset selection. Artif. Intell. 97(1-2), 273-324 (1997). (Pubitemid 127401107)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
34
-
-
47049102021
-
Information-theoretic feature selection in microarray data using variable complementarity
-
Meyer PE, Schretter C, Bontempi G. Information-theoretic feature selection in microarray data using variable complementarity. IEEE J. Sel. Top Signal Process 2(3), 261-274 (2008).
-
(2008)
IEEE J. Sel. Top Signal Process
, vol.2
, Issue.3
, pp. 261-274
-
-
Meyer, P.E.1
Schretter, C.2
Bontempi, G.3
-
35
-
-
33846647359
-
Bivariate variable selection for classification problem
-
University of California-Berkeley CA USA
-
Ng V, Breiman L. Bivariate variable selection for classification problem. Technical Report. Department of Statistics, University of California-Berkeley, CA, USA (2005).
-
(2005)
Technical Report. Department of Statistics
-
-
Ng, V.1
Breiman, L.2
-
36
-
-
7244248755
-
A comparative study of feature selection and multiclass classfication methods for tissue classification based on gene expression
-
DOI 10.1093/bioinformatics/bth267
-
Li T, Zhang C, Ogihara M. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20(15), 2429-2437 (2004). (Pubitemid 39429915)
-
(2004)
Bioinformatics
, vol.20
, Issue.15
, pp. 2429-2437
-
-
Li, T.1
Zhang, C.2
Ogihara, M.3
-
37
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
DOI 10.1126/science.290.5500.2323
-
Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323-2326 (2000). (Pubitemid 32041578)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
38
-
-
67649974951
-
Feature extraction through local learning
-
Sun Y, Wu D. Feature extraction through local learning. Stat. Anal. Data Mining 2(1), 34-47 (2009).
-
(2009)
Stat. Anal. Data Mining
, vol.2
, Issue.1
, pp. 34-47
-
-
Sun, Y.1
Wu, D.2
-
39
-
-
2942534096
-
Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes
-
DOI 10.1073/pnas.0401736101
-
Pittman J, Huang E, Dressman H et al. Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes. Proc. Natl Acad. Sci. USA 101(22), 8431-8436 (2004). (Pubitemid 38736592)
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.22
, pp. 8431-8436
-
-
Pittman, J.1
Huang, E.2
Dressman, H.3
Horng, C.-F.4
Cheng, S.H.5
Tsou, M.-H.6
Chen, C.-M.7
Bild, A.8
Iversen, E.S.9
Huang, A.T.10
Nevins, J.R.11
West, M.12
-
40
-
-
33845910480
-
Comparing prognostic markers for metastases in breast cancer using artificial neural networks
-
Lund University Sweden
-
Ritz C. Comparing prognostic markers for metastases in breast cancer using artificial neural networks. Masters Thesis. Lund University, Sweden (2003).
-
(2003)
Masters Thesis.
-
-
Ritz, C.1
-
41
-
-
4143134783
-
Finding predictive gene groups from microarray data
-
DOI 10.1016/j.jmva.2004.02.012, Multivariate Methods in Genomic Data Analysis
-
Dettling M, Bühlmann P. Finding predictive gene groups from microarray data. J. Multivar. Anal. 90(1), 106-131 (2004). (Pubitemid 41137009)
-
(2004)
Journal of Multivariate Analysis
, vol.90
, Issue.SPEC. ISS. 1
, pp. 106-131
-
-
Dettling, M.1
Buhlmann, P.2
-
42
-
-
74849108615
-
Derivation of molecular signatures for breast cancer recurrence prediction using a two-way validation approach
-
Sun Y, Urquidi V, Goodison S. Derivation of molecular signatures for breast cancer recurrence prediction using a two-way validation approach. Breast Cancer Res. Treat. 119(3), 593-599 (2010).
-
(2010)
Breast Cancer Res. Treat.
, vol.119
, Issue.3
, pp. 593-599
-
-
Sun, Y.1
Urquidi, V.2
Goodison, S.3
-
43
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
DOI 10.1023/A:1012487302797
-
Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1-3), 389-422 (2002). (Pubitemid 34129977)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
44
-
-
14344249889
-
Feature selection L1 vs L2 regularization and rotational invariance
-
ACM International Conference Proceeding Series
-
Ng A. Feature selection, L1 vs L2 regularization, and rotational invariance. Proceedings of the 21st International Conference on Machine Learning. ACM International Conference Proceeding Series 69, 78 (2004).
-
(2004)
Proceedings of the 21st International Conference on Machine Learning
, vol.69
, pp. 78
-
-
Ng, A.1
-
45
-
-
58049211939
-
The wisdom of the commons: Ensemble tree classifiers for prostate cancer prognosis
-
Koziol JA, Feng AC, Jia Z et al. The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis. Bioinformatics 25(1), 54-60 (2009).
-
(2009)
Bioinformatics
, vol.25
, Issue.1
, pp. 54-60
-
-
Koziol, J.A.1
Feng, A.C.2
Jia, Z.3
-
46
-
-
9144264883
-
In silico dissection of cell-type-associated patterns of gene expression in prostate cancer
-
DOI 10.1073/pnas.2536479100
-
Stuart RO, Wachsman W, Berry CC et al. In silico dissection of cell-type-associated patterns of gene expression in prostate cancer. Proc. Natl Acad. Sci. USA 101(2), 615-620 (2004). (Pubitemid 38084685)
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.2
, pp. 615-620
-
-
Stuart, R.O.1
Wachsman, W.2
Berry, C.C.3
Wang-Rodriguez, J.4
Wasserman, L.5
Klacansky, I.6
Masys, D.7
Arden, K.8
Goodison, S.9
McClelland, M.10
Wang, Y.11
Sawyers, A.12
Kalcheva, I.13
Tarin, D.14
Mercola, D.15
-
47
-
-
67650661623
-
Online feature selection algorithm with bayesian l-1 regularization
-
Proceedings of 13th Pacific- Asia Conference on Knowledge Discovery and Data Mining PAKDD09
-
Cai Y, Sun Y, Li J, Goodison S. Online feature selection algorithm with bayesian l-1 regularization. Proceedings of 13th Pacific- Asia Conference on Knowledge Discovery and Data Mining (PAKDD09).Lecture Notes In Artificial Intelligence 5476, 401-413 (2009).
-
(2009)
Lecture Notes In Artificial Intelligence
, vol.5476
, pp. 401-413
-
-
Cai, Y.1
Sun, Y.2
Li, J.3
Goodison, S.4
-
48
-
-
67649935641
-
Genomic approaches to outcome prediction in prostate cancer
-
Febbo PG. Genomic approaches to outcome prediction in prostate cancer. Cancer 115(13 Suppl.), 3046-3057 (2009).
-
(2009)
Cancer
, vol.115
, Issue.13
, pp. 3046-3057
-
-
Febbo, P.G.1
-
49
-
-
0035881732
-
Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer
-
Welsh JB, Sapinoso LM, Su AI et al. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res. 61(16), 5974-5978 (2001). (Pubitemid 32762523)
-
(2001)
Cancer Research
, vol.61
, Issue.16
, pp. 5974-5978
-
-
Welsh, J.B.1
Sapinoso, L.M.2
Su, A.I.3
Kern, S.G.4
Wang-Rodriguez, J.5
Moskaluk, C.A.6
Frierson Jr., H.F.7
Hampton, G.M.8
-
50
-
-
0035939903
-
Delineation of prognostic biomarkers in prostate cancer
-
DOI 10.1038/35090585
-
Dhanasekaran SM, Barrette TR, Ghosh D et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412(6849), 822-826 (2001). (Pubitemid 32801464)
-
(2001)
Nature
, vol.412
, Issue.6849
, pp. 822-826
-
-
Dhanasekaran, S.M.1
Barrette, T.R.2
Ghosh, D.3
Shah, R.4
Varambally, S.5
Kurachi, K.6
Pienta, K.J.7
Rubin, M.A.8
Chinnaiyan, A.M.9
-
51
-
-
0035874995
-
Human prostate cancer and benign prostatic hyperplasia: Molecular dissection by gene expression profiling
-
Luo J, Duggan DJ, Chen Y et al. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. 61(12), 4683-4688 (2001). (Pubitemid 32691876)
-
(2001)
Cancer Research
, vol.61
, Issue.12
, pp. 4683-4688
-
-
Luo, J.1
Duggan, D.J.2
Chen, Y.3
Sauvageot, J.4
Ewing, C.M.5
Bittner, M.L.6
Trent, J.M.7
Isaacs, W.B.8
-
52
-
-
0032950295
-
Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer
-
Kattan MW, Wheeler TM, Scardino PT. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J. Clin. Oncol. 17(5), 1499-1507 (1999). (Pubitemid 29220858)
-
(1999)
Journal of Clinical Oncology
, vol.17
, Issue.5
, pp. 1499-1507
-
-
Kattan, M.W.1
Wheeler, T.M.2
Scardino, P.T.3
-
53
-
-
27244432751
-
Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy
-
Stephenson AJ, Scardino PT, Eastham JA et al. Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J. Clin. Oncol. 23(28), 7005-7012 (2005).
-
(2005)
J. Clin. Oncol.
, vol.23
, Issue.28
, pp. 7005-7012
-
-
Stephenson, A.J.1
Scardino, P.T.2
Eastham, J.A.3
-
54
-
-
67449132037
-
Optimizing molecular signatures for predicting prostate cancer recurrence
-
Sun Y, Goodison S. Optimizing molecular signatures for predicting prostate cancer recurrence. Prostate 69(10), 1119-1127 (2009).
-
(2009)
Prostate
, vol.69
, Issue.10
, pp. 1119-1127
-
-
Sun, Y.1
Goodison, S.2
-
58
-
-
78650424208
-
Fast implementation of l1 regularized learning algorithms using gradient descent methods
-
29 April-1 May OH USA
-
Cai Y, Sun Y, Cheng Y, Li J, Goodison S. Fast implementation of l1 regularized learning algorithms using gradient descent methods. Presented at: 10th SIAM International Conference on Data Mining (SDM).29 April-1 May, OH, USA, 2010.
-
(2010)
Presented at: 10th SIAM International Conference on Data Mining SDM
-
-
Cai, Y.1
Sun, Y.2
Cheng, Y.3
Li, J.4
Goodison, S.5
-
59
-
-
84896378977
-
Pathway based feature selection algorithm for cancer microarray data
-
10.1155/2009/532989 Epub ahead of print
-
Bandyopadhyay N, Kahveci T, Ranka S, Sun Y, Goodison S. Pathway based feature selection algorithm for cancer microarray data. Adv. Bioinformatics DOI: 10.1155/2009/532989 (2010) (Epub ahead of print).
-
(2010)
Adv. Bioinformatics
-
-
Bandyopadhyay, N.1
Kahveci, T.2
Ranka, S.3
Sun, Y.4
Goodison, S.5
-
60
-
-
46249130709
-
The beginning of the end for microarrays
-
Shendure J. The beginning of the end for microarrays? Nat. Methods 5(7), 585-587 (2008).
-
(2008)
Nat. Methods
, vol.5
, Issue.7
, pp. 585-587
-
-
Shendure, J.1
-
61
-
-
33645825183
-
Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
-
USA
-
Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl Acad. Sci. USA 103(15), 5923-5928 (2006).
-
(2006)
Proc. Natl Acad. Sci.
, vol.103
, Issue.15
, pp. 5923-5928
-
-
Ein-Dor, L.1
Zuk, O.2
Domany, E.3
|