메뉴 건너뛰기




Volumn , Issue , 2010, Pages 862-871

Fast implementation of ℓ1 regularized learning algorithms using gradient descent methods

Author keywords

Feature selection; Gradient descent; Sparse solution

Indexed keywords

COMPUTATIONAL EFFICIENCY; CONVEX OPTIMIZATION; DATA MINING; FEATURE EXTRACTION; GRADIENT METHODS;

EID: 78650424208     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972801.75     Document Type: Conference Paper
Times cited : (11)

References (32)
  • 1
    • 34547984768 scopus 로고    scopus 로고
    • Scalable training of L1-regularized log-linear models
    • Corvallis, OR, USA
    • G. Andrew, and J.F. Gao, Scalable Training of L1-Regularized Log-Linear Models, Proc. 24th Intl. Conf. Mach. Learn., Corvallis, OR, USA, 2007, pp. 33-40.
    • (2007) Proc. 24th Intl. Conf. Mach. Learn. , pp. 33-40
    • Andrew, G.1    Gao, J.F.2
  • 2
    • 41549108812 scopus 로고    scopus 로고
    • Algorithms for sparse linear classifiers in the massive data setting
    • S. Balakrishnan, and D. Madigan, Algorithms for sparse linear classifiers in the massive data setting, J. Mach. Learn. Res., 9 (2008), pp. 313-337.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 313-337
    • Balakrishnan, S.1    Madigan, D.2
  • 4
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • O. Chapelle, Training a support vector machine in the primal, Neural Comput., 19 (2007), pp. 1155-1178.
    • (2007) Neural Comput. , vol.19 , pp. 1155-1178
    • Chapelle, O.1
  • 7
    • 0001708712 scopus 로고
    • Dynamical systems which solve optimization problems with linear constraints
    • L. Faybusovich, Dynamical systems which solve optimization problems with linear constraints, IMA J. Math. Ctrl. and Info., 8 (1991), pp 135-149;
    • (1991) IMA J. Math. Ctrl. and Info. , vol.8 , pp. 135-149
    • Faybusovich, L.1
  • 10
    • 34548105186 scopus 로고    scopus 로고
    • Large-scale Bayesian logistic regression for text categorization
    • A. Genkin, D. Lewis, and D. Madigan, Large-scale bayesian logistic regression for text categorization, Technometrics, 49 (2007), pp. 291-304.
    • (2007) Technometrics , vol.49 , pp. 291-304
    • Genkin, A.1    Lewis, D.2    Madigan, D.3
  • 11
    • 84898964855 scopus 로고    scopus 로고
    • Result analysis of the NIPS 2003 feature selection challenge
    • Vancouver, Canada
    • I. Guyon, S. R. Gunn, A. Ben-Hur and G. Dror, Result analysis of the NIPS 2003 feature selection challenge, 17th Adv. Neu. Info. Proc. Sys., Vancouver, Canada, (2005), pp. 545-552.
    • (2005) 17th Adv. Neu. Info. Proc. Sys. , pp. 545-552
    • Guyon, I.1    Gunn, S.R.2    Ben-Hur, A.3    Dror, G.4
  • 13
    • 85117711027 scopus 로고    scopus 로고
    • Exponential priors for maximum entropy models
    • Barcelona, Spain
    • J. Goodman, Exponential priors for maximum entropy models, Proc. 42nd Ann. Meet. Asso. Comp. Ling., Barcelona, Spain, 2004, pp. 305-312.
    • (2004) Proc. 42nd Ann. Meet. Asso. Comp. Ling. , pp. 305-312
    • Goodman, J.1
  • 14
    • 0004151494 scopus 로고
    • Cambridge University Press, Cambridge
    • R. Horn, and C. Johnson, Matrix analysis. Cambridge University Press, Cambridge, 1985.
    • (1985) Matrix Analysis
    • Horn, R.1    Johnson, C.2
  • 15
    • 84968496713 scopus 로고
    • Sequential minimax search for a maximum
    • J. Kiefer, Sequential minimax search for a maximum, Proc. 4th Amer Math. Soc., (1953), pp. 502-506.
    • (1953) Proc. 4th Amer Math. Soc. , pp. 502-506
    • Kiefer, J.1
  • 17
    • 64149115569 scopus 로고    scopus 로고
    • Sparse online learning via truncated gradient
    • J. Langford, L., Li, and T., Zhang, Sparse Online Learning via Truncated Gradient, J. Mach. Learn. Res., 10 (2009), pp. 777-801.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 777-801
    • Langford, J.1    Li, L.2    Zhang, T.3
  • 20
    • 14344249889 scopus 로고    scopus 로고
    • Feature selection, L1 vs. L2 regularization, and rotational invariance
    • Banff, Alberta, Canada
    • A. Y. Ng, Feature selection, L1 vs. L2 regularization, and rotational invariance, Proc. 21st Intl. Conf. Mach. Learn., Banff, Alberta, Canada, 2004, pp. 78-86.
    • (2004) Proc. 21st Intl. Conf. Mach. Learn. , pp. 78-86
    • Ng, A.Y.1
  • 22
    • 34547849507 scopus 로고    scopus 로고
    • L1 regularization-path algorithm for generalized linear models
    • M. Park, and T. Hastie, L1 regularization-path algorithm for generalized linear models, J. R. Stat. Soc. Ser. B Stat. Meth., 69 (2007), pp. 659-677.
    • (2007) J. R. Stat. Soc. Ser. B Stat. Meth. , vol.69 , pp. 659-677
    • Park, M.1    Hastie, T.2
  • 23
    • 1942452297 scopus 로고    scopus 로고
    • Online feature selection using grafting
    • Washington, DC, USA
    • S. Perkins, and J. Theiler, Online feature selection using grafting, Proc. 20th Intl. Conf. Mach. Learn., Washington, DC, USA, 2003, pp. 592-599.
    • (2003) Proc. 20th Intl. Conf. Mach. Learn. , pp. 592-599
    • Perkins, S.1    Theiler, J.2
  • 24
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • Bonn, Germany
    • J. D. Rennie, and N. Srebro, Fast maximum margin matrix factorization for collaborative prediction, Proc. 22nd Intl. Conf. Mach. Learn., Bonn, Germany, 2005, pp. 713-719.
    • (2005) Proc. 22nd Intl. Conf. Mach. Learn. , pp. 713-719
    • Rennie, J.D.1    Srebro, N.2
  • 25
    • 84898950954 scopus 로고    scopus 로고
    • Following curved regularized optimization solution paths
    • Whistler, Canada
    • S. Rosset, Following curved regularized optimization solution paths, Proc. 17th Adv. Neu. Info. Proc. Sys., Whistler, Canada, 2005, pp. 1153-1160.
    • (2005) Proc. 17th Adv. Neu. Info. Proc. Sys. , pp. 1153-1160
    • Rosset, S.1
  • 26
    • 12844274244 scopus 로고    scopus 로고
    • Boosting as a regularized path to a maximum margin classifier
    • S. Rosset, J. Zhu, and T. Hastie, Boosting as a regularized path to a maximum margin classifier, J. Mach. Learn. Res., 5 (2004), pp. 941-973.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 941-973
    • Rosset, S.1    Zhu, J.2    Hastie, T.3
  • 27
    • 1242263806 scopus 로고    scopus 로고
    • The generalized LASSO
    • V. Roth, The generalized LASSO, IEEE Trans. Neu. Net., 15 (2004), pp. 16-28.
    • (2004) IEEE Trans. Neu. Net. , vol.15 , pp. 16-28
    • Roth, V.1
  • 28
    • 38049108135 scopus 로고    scopus 로고
    • Fast optimization methods for L1 regularization: A comparative study and two new approaches
    • Warsaw, Poland
    • M. Schmidt, G. Fung, and R. Rosales, Fast optimization methods for L1 regularization: a comparative study and two new approaches, Proc. 18th Euro. Conf. Mach. Learn., Warsaw, Poland, 2007, pp. 286-297.
    • (2007) Proc. 18th Euro. Conf. Mach. Learn. , pp. 286-297
    • Schmidt, M.1    Fung, G.2    Rosales, R.3
  • 29
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • S. Shevade, and S. Keerthi, A simple and efficient algorithm for gene selection using sparse logistic regression, Bioinformatics, 19 (2003), pp. 2246-2253.
    • (2003) Bioinformatics , vol.19 , pp. 2246-2253
    • Shevade, S.1    Keerthi, S.2
  • 30
    • 22244447065 scopus 로고    scopus 로고
    • Integration of gene expression profiling and clinical variables to predict prostate carcinoma recurrence after radical prostatectomy
    • A. J. Stephenson, A. Smith, M. W. Kattan, J. Satagopan, V. E. Reuter, P. T. Scardino and W. L. Gerald, Integration of gene expression profiling and clinical variables to predict prostate carcinoma recurrence after radical prostatectomy, Cancer, 104 (2005), pp. 290-298.
    • (2005) Cancer , vol.104 , pp. 290-298
    • Stephenson, A.J.1    Smith, A.2    Kattan, M.W.3    SaTagopan, J.4    Reuter, V.E.5    Scardino, P.T.6    Gerald, W.L.7
  • 31
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • R. Tibshirani, Regression shrinkage and selection via the LASSO, J. R. Stat. Soc. Ser. B, 58 (1996), pp. 267-288.
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.