-
1
-
-
33746317317
-
Predicting habitat suitability with machine learning models: the potential area of Pinus sylvestris L. in the Iberian Peninsula
-
Garzón M.B., Blazek R., Neteler M., Dios R.S.D., Ollero H.S., Furlanello C. Predicting habitat suitability with machine learning models: the potential area of Pinus sylvestris L. in the Iberian Peninsula. Ecological Modelling 2006, 197(3):383-393.
-
(2006)
Ecological Modelling
, vol.197
, Issue.3
, pp. 383-393
-
-
Garzón, M.B.1
Blazek, R.2
Neteler, M.3
Dios, R.S.D.4
Ollero, H.S.5
Furlanello, C.6
-
3
-
-
34548444205
-
Random forests as a tool for ecohydrological distribution modelling
-
Peters J., Baets B.D., Verhoest N.E.C., Samson R., Degroeve S., Becker P.D., Huybrechts W. Random forests as a tool for ecohydrological distribution modelling. Ecological Modelling 2007, 207(2):304-318.
-
(2007)
Ecological Modelling
, vol.207
, Issue.2
, pp. 304-318
-
-
Peters, J.1
Baets, B.D.2
Verhoest, N.E.C.3
Samson, R.4
Degroeve, S.5
Becker, P.D.6
Huybrechts, W.7
-
4
-
-
0345548657
-
Random forest: a classification and regression tool for compound classification and QSAR modeling
-
Svetnik V., Liaw A., Tong C., Culberson J.C., Sheridan R.P., Feuston B.P. Random forest: a classification and regression tool for compound classification and QSAR modeling. Journal of Chemical Information and Computer Sciences 2003, 43(6):1947-1958.
-
(2003)
Journal of Chemical Information and Computer Sciences
, vol.43
, Issue.6
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Culberson, J.C.4
Sheridan, R.P.5
Feuston, B.P.6
-
5
-
-
20444399504
-
Boosting: an ensemble learning tool for compound classification and QSAR modeling
-
Svetnik V., Wang T., Tong C., Liaw A., Sheridan R.P., Song Q. Boosting: an ensemble learning tool for compound classification and QSAR modeling. Journal of Chemical Information and Modeling 2005, 45(3):786-799.
-
(2005)
Journal of Chemical Information and Modeling
, vol.45
, Issue.3
, pp. 786-799
-
-
Svetnik, V.1
Wang, T.2
Tong, C.3
Liaw, A.4
Sheridan, R.P.5
Song, Q.6
-
6
-
-
30344489020
-
QSAR analysis of phenolic antioxidants using MOLMAP descriptors of local properties
-
Gupta S., Matthew S., Abreu P.M., Aires-de-Sousa J. QSAR analysis of phenolic antioxidants using MOLMAP descriptors of local properties. Bioorganic & medicinal chemistry 2006, 14(4):1199-1206.
-
(2006)
Bioorganic & medicinal chemistry
, vol.14
, Issue.4
, pp. 1199-1206
-
-
Gupta, S.1
Matthew, S.2
Abreu, P.M.3
Aires-de-Sousa, J.4
-
7
-
-
37349114485
-
Predicting human liver microsomal stability with machine learning techniques
-
Sakiyama Y., Yuki H., Moriya T., Hattori K., Suzuki M., Shimada K., Honma T. Predicting human liver microsomal stability with machine learning techniques. Journal of Molecular Graphics and Modelling 2008, 26(6):907-915.
-
(2008)
Journal of Molecular Graphics and Modelling
, vol.26
, Issue.6
, pp. 907-915
-
-
Sakiyama, Y.1
Yuki, H.2
Moriya, T.3
Hattori, K.4
Suzuki, M.5
Shimada, K.6
Honma, T.7
-
8
-
-
20444483774
-
Application of boosting to classification problems in chemometrics
-
Zhang M.H., Xu Q.S., Daeyaert F., Lewi P.J., Massart D.L. Application of boosting to classification problems in chemometrics. Analytica Chimica Acta 2005, 544(1):167-176.
-
(2005)
Analytica Chimica Acta
, vol.544
, Issue.1
, pp. 167-176
-
-
Zhang, M.H.1
Xu, Q.S.2
Daeyaert, F.3
Lewi, P.J.4
Massart, D.L.5
-
9
-
-
13244262710
-
Few amino acid positions in rpoB are associated with most of the rifampin resistance in Mycobacterium tuberculosis
-
Cummings M., Segal M. Few amino acid positions in rpoB are associated with most of the rifampin resistance in Mycobacterium tuberculosis. BMC Bioinformatics 2004, 5(1):137-143.
-
(2004)
BMC Bioinformatics
, vol.5
, Issue.1
, pp. 137-143
-
-
Cummings, M.1
Segal, M.2
-
10
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
Diaz-Uriarte R., Alvarez de Andres S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006, 7(1):3-15.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.1
, pp. 3-15
-
-
Diaz-Uriarte, R.1
Alvarez de Andres, S.2
-
11
-
-
33747841010
-
Pathway analysis using random forests classification and regression
-
Pang H., Lin A., Holford M., Enerson B.E., Lu B., Lawton M.P., Floyd E., Zhao H. Pathway analysis using random forests classification and regression. Bioinformatics 2006, 22(16):2028-2036.
-
(2006)
Bioinformatics
, vol.22
, Issue.16
, pp. 2028-2036
-
-
Pang, H.1
Lin, A.2
Holford, M.3
Enerson, B.E.4
Lu, B.5
Lawton, M.P.6
Floyd, E.7
Zhao, H.8
-
12
-
-
35748978234
-
Empirical characterization of random forest variable importance measures
-
Archer K.J., Kimes R.V. Empirical characterization of random forest variable importance measures. Computational Statistics & Data Analysis 2008, 52(4):2249-2260.
-
(2008)
Computational Statistics & Data Analysis
, vol.52
, Issue.4
, pp. 2249-2260
-
-
Archer, K.J.1
Kimes, R.V.2
-
13
-
-
67650770061
-
Predictor correlation impacts machine learning algorithms: implications for genomic studies
-
Nicodemus K.K., Malley J.D. Predictor correlation impacts machine learning algorithms: implications for genomic studies. Bioinformatics 2009, 25(15):1884-1890.
-
(2009)
Bioinformatics
, vol.25
, Issue.15
, pp. 1884-1890
-
-
Nicodemus, K.K.1
Malley, J.D.2
-
15
-
-
33847096395
-
Bias in random forest variable importance measures: illustrations, sources and a solution
-
Strobl C., Boulesteix A.L., Zeileis A., Hothorn T. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 2007, 8:25-45.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 25-45
-
-
Strobl, C.1
Boulesteix, A.L.2
Zeileis, A.3
Hothorn, T.4
-
16
-
-
48549095457
-
Conditional variable importance for random forests
-
Strobl C., Boulesteix A., Kneib T., Augustin T., Zeileis A. Conditional variable importance for random forests. BMC Bioinformatics 2008, 9(1):307-317.
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.1
, pp. 307-317
-
-
Strobl, C.1
Boulesteix, A.2
Kneib, T.3
Augustin, T.4
Zeileis, A.5
-
17
-
-
70450064693
-
Variable importance assessment in regression: linear regression versus random forest
-
Grömping U. Variable importance assessment in regression: linear regression versus random forest. The American Statistician 2009, 63(4):308-319.
-
(2009)
The American Statistician
, vol.63
, Issue.4
, pp. 308-319
-
-
Grömping, U.1
-
19
-
-
53549131556
-
A bias correction algorithm for the Gini variable importance measure in classification trees
-
Sandri M., Zuccolotto P. A bias correction algorithm for the Gini variable importance measure in classification trees. Journal of Computational and Graphical Statistics 2008, 17(3):611-628.
-
(2008)
Journal of Computational and Graphical Statistics
, vol.17
, Issue.3
, pp. 611-628
-
-
Sandri, M.1
Zuccolotto, P.2
-
22
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Machine Learning 1996, 24(2):123-140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
23
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Machine Learning 2001, 45(1):5-32.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
25
-
-
0035470889
-
Greedy function approximation: a gradient boosting machine
-
Friedman J.H. Greedy function approximation: a gradient boosting machine. The Annals of Statistics 2001, 29(5):1189-1232.
-
(2001)
The Annals of Statistics
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
28
-
-
41349116565
-
A framework to identify physiological responses in microarray-based gene expression studies: selection and interpretation of biologically relevant genes
-
Rodenburg W., Heidema A.G., Boer J.M.A., Bovee-Oudenhoven I.M.J., Feskens E.J.M., Mariman E.C.M., Keijer J. A framework to identify physiological responses in microarray-based gene expression studies: selection and interpretation of biologically relevant genes. Physiological Genomics Oct. 2008, 33(1):78-90.
-
(2008)
Physiological Genomics
, vol.33
, Issue.1
, pp. 78-90
-
-
Rodenburg, W.1
Heidema, A.G.2
Boer, J.M.A.3
Bovee-Oudenhoven, I.M.J.4
Feskens, E.J.M.5
Mariman, E.C.M.6
Keijer, J.7
-
29
-
-
79951480123
-
-
R Development Core Team R Foundation for Statistical Computing, Vienna, Austria
-
R Development Core Team R: A Language and Environment for Statistical Computing 2010, R Foundation for Statistical Computing, Vienna, Austria.
-
(2010)
R: A Language and Environment for Statistical Computing
-
-
-
30
-
-
0345040873
-
Classification and regression by randomForest
-
Liaw A., Wiener M. Classification and regression by randomForest. R News 2002, 2(3):18-22.
-
(2002)
R News
, vol.2
, Issue.3
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
32
-
-
77949388276
-
The behaviour of random forest permutation-based variable importance measures under predictor correlation
-
Nicodemus K.K., Malley J.D., Strobl C., Ziegler A. The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinformatics 2010, 11(1):110-122.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.1
, pp. 110-122
-
-
Nicodemus, K.K.1
Malley, J.D.2
Strobl, C.3
Ziegler, A.4
-
33
-
-
21244436700
-
Performance of some variable selection methods when multicollinearity is present
-
Chong I., Jun C. Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems Jul. 2005, 78(1):103-112.
-
(2005)
Chemometrics and Intelligent Laboratory Systems
, vol.78
, Issue.1
, pp. 103-112
-
-
Chong, I.1
Jun, C.2
-
34
-
-
0034621334
-
Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
-
Russell E.L., Chiang L.H., Braatz R.D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems 2000, 51(1):81-93.
-
(2000)
Chemometrics and Intelligent Laboratory Systems
, vol.51
, Issue.1
, pp. 81-93
-
-
Russell, E.L.1
Chiang, L.H.2
Braatz, R.D.3
-
35
-
-
0027561446
-
A plant-wide industrial process control problem
-
Downs J.J., Vogel E.F. A plant-wide industrial process control problem. Computers & Chemical Engineering 1993, 17(3):245-255.
-
(1993)
Computers & Chemical Engineering
, vol.17
, Issue.3
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
-
36
-
-
79951948649
-
Data-driven techniques for fault detection and diagnosis in chemical processes
-
Russell E.L., Chiang L.H., Braatz R.D. Data-driven techniques for fault detection and diagnosis in chemical processes. Springer 2000.
-
(2000)
Springer
-
-
Russell, E.L.1
Chiang, L.H.2
Braatz, R.D.3
|