메뉴 건너뛰기




Volumn 33, Issue 1, 2008, Pages 78-90

A framework to identify physiological responses in microarray-based gene expression studies: Selection and interpretation of biologically relevant genes

Author keywords

Biological processes; Gene selection; Random forest; t test; Transcriptomics

Indexed keywords

ANIMAL EXPERIMENT; ARTICLE; CONTROLLED STUDY; DISCRIMINANT ANALYSIS; GENE EXPRESSION; GENE INTERACTION; GENETIC ANALYSIS; GENETIC SELECTION; GENOME ANALYSIS; MICROARRAY ANALYSIS; NONHUMAN; NUCLEOTIDE SEQUENCE; PRIORITY JOURNAL; RANDOM FOREST; RAT; STATISTICAL ANALYSIS; SUPPORT VECTOR MACHINE;

EID: 41349116565     PISSN: 10948341     EISSN: 15312267     Source Type: Journal    
DOI: 10.1152/physiolgenomics.00167.2007     Document Type: Article
Times cited : (39)

References (50)
  • 1
    • 33645376731 scopus 로고    scopus 로고
    • Nutrigenomics: From molecular nutrition to prevention of disease
    • Afman L, Muller M. Nutrigenomics: from molecular nutrition to prevention of disease. J Am Diet Assoc 106: 569-576, 2006.
    • (2006) J Am Diet Assoc , vol.106 , pp. 569-576
    • Afman, L.1    Muller, M.2
  • 2
    • 29244448340 scopus 로고    scopus 로고
    • Microarray data analysis: From disarray to consolidation and consensus
    • Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 7: 55-65, 2006.
    • (2006) Nat Rev Genet , vol.7 , pp. 55-65
    • Allison, D.B.1    Cui, X.2    Page, G.P.3    Sabripour, M.4
  • 3
    • 18744389489 scopus 로고    scopus 로고
    • Significance analysis of functional categories in gene expression studies: A structured permutation approach
    • Barry WT, Nobel AB, Wright FA. Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics 21: 1943-1949, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 1943-1949
    • Barry, W.T.1    Nobel, A.B.2    Wright, F.A.3
  • 4
  • 7
    • 4344571581 scopus 로고    scopus 로고
    • Rank products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments
    • Breitling R, Armengaud P, Amtmann A, Herzyk P. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573: 83-92, 2004.
    • (2004) FEBS Lett , vol.573 , pp. 83-92
    • Breitling, R.1    Armengaud, P.2    Amtmann, A.3    Herzyk, P.4
  • 8
    • 34248532878 scopus 로고    scopus 로고
    • Selection of differentially expressed genes in microarray data analysis
    • Chen JJ, Wang SJ, Tsai CA, Lin CJ. Selection of differentially expressed genes in microarray data analysis. Pharmacogenomics J 7: 212-220, 2006.
    • (2006) Pharmacogenomics J , vol.7 , pp. 212-220
    • Chen, J.J.1    Wang, S.J.2    Tsai, C.A.3    Lin, C.J.4
  • 10
    • 41349107938 scopus 로고    scopus 로고
    • CRAN. http://cran.r-project.org/.
    • CRAN. http://cran.r-project.org/.
  • 13
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Diaz-Uriarte R, Alvarez de Andres S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7: 3, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    Alvarez de Andres, S.2
  • 14
    • 33750946376 scopus 로고    scopus 로고
    • Functional interpretation of microarray experiments
    • Dopazo J. Functional interpretation of microarray experiments. OMICS 10: 398-410, 2006.
    • (2006) OMICS , vol.10 , pp. 398-410
    • Dopazo, J.1
  • 15
    • 33751373933 scopus 로고    scopus 로고
    • Babel's tower revisited: A universal resource for cross-referencing across annotation databases
    • Draghici S, Sellamuthu S, Khatri P. Babel's tower revisited: a universal resource for cross-referencing across annotation databases. Bioinformatics 22: 2934-2939, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 2934-2939
    • Draghici, S.1    Sellamuthu, S.2    Khatri, P.3
  • 17
    • 0346801873 scopus 로고    scopus 로고
    • The Gene Ontology (GO) database and informatics resource
    • Gene Ontology Consortium
    • Gene Ontology Consortium. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32: D258-D261, 2004.
    • (2004) Nucleic Acids Res , vol.32
  • 18
    • 41349086326 scopus 로고    scopus 로고
    • CNIO Bioinformatics Unit
    • GeneSrF. Gene selection with random forests. CNIO Bioinformatics Unit. http://genesrf.bioinfo.cnio.es.
    • Gene selection with random forests
  • 19
    • 34249663294 scopus 로고    scopus 로고
    • Analyzing gene expression data in terms of gene sets: Methodological issues
    • Goeman JJ, Buhlmann P. Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 23: 980-987, 2007.
    • (2007) Bioinformatics , vol.23 , pp. 980-987
    • Goeman, J.J.1    Buhlmann, P.2
  • 20
    • 0025066941 scopus 로고
    • More powerful procedures for multiple significance testing
    • Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Stat Med 9: 811-818, 1990.
    • (1990) Stat Med , vol.9 , pp. 811-818
    • Hochberg, Y.1    Benjamini, Y.2
  • 22
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto Encyclopedia of Genes and Genomes
    • Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28: 27-30, 2000.
    • (2000) Nucleic Acids Res , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 23
    • 24644470505 scopus 로고    scopus 로고
    • Ontological analysis of gene expression data: Current tools, limitations, and open problems
    • Khatri P, Draghici S. Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21: 3587-3595, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 3587-3595
    • Khatri, P.1    Draghici, S.2
  • 24
    • 27944474776 scopus 로고    scopus 로고
    • Pavlidis P. ErmineJ: Tool for functional analysis of gene expression data sets
    • Lee HK, Braynen W, Keshav K, Pavlidis P. ErmineJ: tool for functional analysis of gene expression data sets. BMC Bioinformatics 6: 269, 2005.
    • (2005) BMC Bioinformatics , vol.6 , pp. 269
    • Lee, H.K.1    Braynen, W.2    Keshav, K.3
  • 25
    • 10444280144 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • Lee JW, Lee JB, Park M, Song SH. An extensive comparison of recent classification tools applied to microarray data. Comput Stat Data Anal 48: 869-885, 2005.
    • (2005) Comput Stat Data Anal , vol.48 , pp. 869-885
    • Lee, J.W.1    Lee, J.B.2    Park, M.3    Song, S.H.4
  • 26
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw A, Wiener M. Classification and regression by randomForest. R News 2: 18-22, 2002.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 27
    • 25444453244 scopus 로고    scopus 로고
    • Screening large-scale association study data: Exploiting interactions using random forests
    • Lunetta KL, Hayward LB, Segal J, Van Eerdewegh P. Screening large-scale association study data: exploiting interactions using random forests. BMC Genet 5: 32, 2004.
    • (2004) BMC Genet , vol.5 , pp. 32
    • Lunetta, K.L.1    Hayward, L.B.2    Segal, J.3    Van Eerdewegh, P.4
  • 28
    • 27744523693 scopus 로고    scopus 로고
    • Assessing the statistical significance of the achieved classification error of classifiers constructed using serum peptide profiles, and a prescription for random sampling repeated studies for massive high-throughput genomic and proteomics studies
    • Lyons-Weiler J, Pelikan R, Zeh HJ, Whitcomb DC, Malehorn DE, Bigbee WL, Hauskrecht M. Assessing the statistical significance of the achieved classification error of classifiers constructed using serum peptide profiles, and a prescription for random sampling repeated studies for massive high-throughput genomic and proteomics studies. Cancer Informatics 1: 53-77, 2005.
    • (2005) Cancer Informatics , vol.1 , pp. 53-77
    • Lyons-Weiler, J.1    Pelikan, R.2    Zeh, H.J.3    Whitcomb, D.C.4    Malehorn, D.E.5    Bigbee, W.L.6    Hauskrecht, M.7
  • 30
    • 0038054341 scopus 로고    scopus 로고
    • Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34: 267-273, 2003.
    • Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34: 267-273, 2003.
  • 31
    • 31444454279 scopus 로고    scopus 로고
    • Analysis of gene expression in pathophysiological states: Balancing false discovery and false negative rates
    • Norris AW, Kahn CR. Analysis of gene expression in pathophysiological states: balancing false discovery and false negative rates. Proc Natl Acad Sci USA 103: 649-653, 2006.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 649-653
    • Norris, A.W.1    Kahn, C.R.2
  • 32
    • 0034618039 scopus 로고    scopus 로고
    • Characterization of palladin, a novel protein localized to stress fibers and cell adhesions
    • Parast MM, Otey CA. Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. J Cell Biol 150: 643-656, 2000.
    • (2000) J Cell Biol , vol.150 , pp. 643-656
    • Parast, M.M.1    Otey, C.A.2
  • 33
    • 32644443742 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor alpha mediates the effects of high-fat diet on hepatic gene expression
    • Patsouris D, Reddy JK, Muller M, Kersten S. Peroxisome proliferator-activated receptor alpha mediates the effects of high-fat diet on hepatic gene expression. Endocrinology 147: 1508-1516, 2006.
    • (2006) Endocrinology , vol.147 , pp. 1508-1516
    • Patsouris, D.1    Reddy, J.K.2    Muller, M.3    Kersten, S.4
  • 34
    • 1842535183 scopus 로고    scopus 로고
    • The intraclass correlation coefficient applied for evaluation of data correction, labeling methods, and rectal biopsy sampling in DNA microarray experiments
    • Pellis L, Franssen-van Hal NL, Burema J, Keijer J. The intraclass correlation coefficient applied for evaluation of data correction, labeling methods, and rectal biopsy sampling in DNA microarray experiments. Physiol Genomics 16: 99-106, 2003.
    • (2003) Physiol Genomics , vol.16 , pp. 99-106
    • Pellis, L.1    Franssen-van Hal, N.L.2    Burema, J.3    Keijer, J.4
  • 35
    • 0035375137 scopus 로고    scopus 로고
    • Computational analysis of microarray data
    • Quackenbush J. Computational analysis of microarray data. Nat Rev Genet 2: 418-427, 2001.
    • (2001) Nat Rev Genet , vol.2 , pp. 418-427
    • Quackenbush, J.1
  • 37
    • 34249293911 scopus 로고    scopus 로고
    • Circumventing the cut-off for enrichment analysis
    • Rubin E. Circumventing the cut-off for enrichment analysis. Brief Bioinform 7: 202-203, 2006.
    • (2006) Brief Bioinform , vol.7 , pp. 202-203
    • Rubin, E.1
  • 38
    • 20044388557 scopus 로고    scopus 로고
    • From signatures to models: Understanding cancer using microarrays
    • Segal E, Friedman N, Kaminski N, Regev A, Koller D. From signatures to models: understanding cancer using microarrays. Nat Genet 37, Suppl: S38-S45, 2005.
    • (2005) Nat Genet , vol.37 , Issue.SUPPL.
    • Segal, E.1    Friedman, N.2    Kaminski, N.3    Regev, A.4    Koller, D.5
  • 39
    • 16444381830 scopus 로고    scopus 로고
    • Tumor classification by tissue microarray profiling: Random forest clustering applied to renal cell carcinoma
    • Shi T, Seligson D, Belldegrun AS, Palotie A, Horvath S. Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma. Mod Pathol 18: 547-557, 2005.
    • (2005) Mod Pathol , vol.18 , pp. 547-557
    • Shi, T.1    Seligson, D.2    Belldegrun, A.S.3    Palotie, A.4    Horvath, S.5
  • 40
    • 0036899286 scopus 로고    scopus 로고
    • From patterns to pathways: Gene expression data analysis comes of age
    • Slonim DK. From patterns to pathways: gene expression data analysis comes of age. Nat Genet 32, Suppl: 502-508, 2002.
    • (2002) Nat Genet , vol.32 , Issue.SUPPL. , pp. 502-508
    • Slonim, D.K.1
  • 41
    • 0038048164 scopus 로고    scopus 로고
    • Statistical issues in cDNA microarray data analysis
    • Smyth GK, Yang YH, Speed T. Statistical issues in cDNA microarray data analysis. Methods Mol Biol 224: 111-136, 2003.
    • (2003) Methods Mol Biol , vol.224 , pp. 111-136
    • Smyth, G.K.1    Yang, Y.H.2    Speed, T.3
  • 42
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: Illustrations, sources and a solution
    • Strobl C, Boulesteix AL, Zeileis A, Hothorn T. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 8: 25, 2007.
    • (2007) BMC Bioinformatics , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A.L.2    Zeileis, A.3    Hothorn, T.4
  • 45
    • 25444472585 scopus 로고    scopus 로고
    • Pathway level analysis of gene expression using singular value decomposition
    • Tomfohr J, Lu J, Kepler TB. Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics 6: 225, 2005.
    • (2005) BMC Bioinformatics , vol.6 , pp. 225
    • Tomfohr, J.1    Lu, J.2    Kepler, T.B.3
  • 46
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116-5121, 2001.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 47
    • 0036975148 scopus 로고    scopus 로고
    • Pattern recognition techniques in microarray data analysis: A survey
    • Valafar F. Pattern recognition techniques in microarray data analysis: a survey. Ann NY Acad Sci 980: 41-64, 2002.
    • (2002) Ann NY Acad Sci , vol.980 , pp. 41-64
    • Valafar, F.1
  • 48
    • 33646761944 scopus 로고    scopus 로고
    • Microarray analysis of gene expression: Considerations in data mining and statistical treatment
    • Verducci JS, Melfi VF, Lin S, Wang Z, Roy S, Sen CK. Microarray analysis of gene expression: considerations in data mining and statistical treatment. Physiol Genomics 25: 355-363, 2006.
    • (2006) Physiol Genomics , vol.25 , pp. 355-363
    • Verducci, J.S.1    Melfi, V.F.2    Lin, S.3    Wang, Z.4    Roy, S.5    Sen, C.K.6
  • 49
    • 33846057516 scopus 로고    scopus 로고
    • Regulatory networks: Linking microarray data to systems biology
    • Werner T. Regulatory networks: linking microarray data to systems biology. Mech Ageing Dev 128: 168-172, 2007.
    • (2007) Mech Ageing Dev , vol.128 , pp. 168-172
    • Werner, T.1
  • 50
    • 33751363024 scopus 로고    scopus 로고
    • Large scale data mining approach for gene-specific standardization of microarray gene expression data
    • Yoon S, Yang Y, Choi J, Seong J. Large scale data mining approach for gene-specific standardization of microarray gene expression data. Bioinformatics 22: 2898-2904, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 2898-2904
    • Yoon, S.1    Yang, Y.2    Choi, J.3    Seong, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.