메뉴 건너뛰기




Volumn , Issue , 2010, Pages 778-781

Analytic modeling and piezoresistive detection theory of acoustic resonances in carbon nanotubes

Author keywords

[No Author keywords available]

Indexed keywords

ACOUSTIC RESONANCE; ANALYTIC MODELING; AVERAGE STRAIN; CAPACITIVE DRIVES; DETECTION MECHANISM; ELECTRICAL MEASUREMENT TECHNIQUES; HIGH FREQUENCY MEASUREMENTS; INPUT PARAMETER; L-BAND FREQUENCIES; PIEZORESISTIVE DETECTION; PIEZORESISTIVE PROPERTIES; PIEZORESISTIVE SENSING; ULTRA-HIGH FREQUENCY;

EID: 79951816249     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/NANO.2010.5697820     Document Type: Conference Paper
Times cited : (6)

References (17)
  • 1
    • 44949090541 scopus 로고    scopus 로고
    • A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator
    • X.L. Feng, C.J. White, A. Hajimiri, and M.L. Roukes, "A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator," Nature Nanotech., vol. 3, pp. 342-346, 2008.
    • (2008) Nature Nanotech. , vol.3 , pp. 342-346
    • Feng, X.L.1    White, C.J.2    Hajimiri, A.3    Roukes, M.L.4
  • 4
    • 1842581806 scopus 로고    scopus 로고
    • Approaching the quantum limit of a nanomechanical resonator
    • M.D. LaHaye, O. Buu, B. Camarota, and K.C. Schwab, "Approaching the quantum limit of a nanomechanical resonator," Science, vol. 304, pp. 74-77, 2004.
    • (2004) Science , vol.304 , pp. 74-77
    • LaHaye, M.D.1    Buu, O.2    Camarota, B.3    Schwab, K.C.4
  • 5
    • 0037472921 scopus 로고    scopus 로고
    • Nanoelectromechanical systems: Nanodevice motion at microwave frequencies
    • X.M.H. Huang, C.A. Zorman, M. Mehregany, and M.L. Roukes, "Nanoelectromechanical systems: Nanodevice motion at microwave frequencies," Nature, vol. 421, pp. 496, 2003.
    • (2003) Nature , vol.421 , pp. 496
    • Huang, X.M.H.1    Zorman, C.A.2    Mehregany, M.3    Roukes, M.L.4
  • 7
    • 19744383454 scopus 로고    scopus 로고
    • Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems
    • T. Kouh, D. Karabacak, D. H. Kim, and K. L. Ekinci, "Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems," Appl. Phys. Lett., vol. 86, pp. 013106, 2005.
    • (2005) Appl. Phys. Lett. , vol.86 , pp. 013106
    • Kouh, T.1    Karabacak, D.2    Kim, D.H.3    Ekinci, K.L.4
  • 8
    • 33947605764 scopus 로고    scopus 로고
    • MEMS technology for timing and frequency control
    • C.T. Nguyen, "MEMS technology for timing and frequency control," IEEE Trans. Ultrason. Ferr. Freq. Contr., vol. 54, pp. 251-270, 2007.
    • (2007) IEEE Trans. Ultrason. Ferr. Freq. Contr. , vol.54 , pp. 251-270
    • Nguyen, C.T.1
  • 9
    • 4644252328 scopus 로고    scopus 로고
    • A tunable carbon nanotube electrochemical oscillator
    • DOI 10.1038/nature02905
    • V. Sazonova, Y. Yaish, H. Ustünel, D. Roundy, T.A. Arias, P.L. McEuen, "A tunable carbon nanotube electromechanical oscillator," Nature, vol. 431, pp. 284-287, 2004. (Pubitemid 39265658)
    • (2004) Nature , vol.431 , Issue.7006 , pp. 284-287
    • Sazonova, V.1    Yalsh, Y.2    Ustunel, I.3    Roundy, D.4    Arlas, T.A.5    McEuen, P.L.6
  • 10
    • 33747791245 scopus 로고    scopus 로고
    • Ultrahigh frequency nanotube resonators, Phys. Rev
    • H.B. Peng, C.W. Chang, S. Aloni, T.D. Yuzvinsky, and A. Zettl, "Ultrahigh frequency nanotube resonators," Phys. Rev. Lett., vol. 97, pp. 087203, 2006.
    • (2006) Lett. , vol.97 , pp. 087203
    • Peng, H.B.1    Chang, C.W.2    Aloni, S.3    Yuzvinsky, T.D.4    Zettl, A.5
  • 12
    • 48449083960 scopus 로고    scopus 로고
    • Self-transducing silicon nanowire electromechanical systems at room temperature
    • H. Rongrui, X.L. Feng, M.L. Roukes, and Peidong Yang, "Self-transducing silicon nanowire electromechanical systems at room temperature," Nano Lett., vol. 8, pp. 1756-1761, 2008.
    • (2008) Nano Lett. , vol.8 , pp. 1756-1761
    • Rongrui, H.1    Feng, X.L.2    Roukes, M.L.3    Yang, P.4
  • 13
    • 16244369727 scopus 로고    scopus 로고
    • Modeling a suspended nanotube oscillator
    • H. Üstünel, D. Roundy, and T.A. Arias, "Modeling a suspended nanotube oscillator," Nano Lett., vol. 5, pp. 523-526, 2005.
    • (2005) Nano Lett. , vol.5 , pp. 523-526
    • ÜStüNel, H.1    Roundy, D.2    Arias, T.A.3
  • 14
    • 0034229826 scopus 로고    scopus 로고
    • Electronic structure of deformed carbon nanotubes
    • L. Yang and J. Han, "Electronic structure of deformed carbon nanotubes," Phys. Rev. Lett., vol. 85, pp. 154-157, 2000.
    • (2000) Phys. Rev. Lett. , vol.85 , pp. 154-157
    • Yang, L.1    Han, J.2
  • 16
    • 17044370480 scopus 로고    scopus 로고
    • Piezoresistance of carbon nanotubes on deformable thin-film membranes
    • R.J. Grow, Q. Wang, J. Cao, D. Wang, and H. Dai, "Piezoresistance of carbon nanotubes on deformable thin-film membranes," Appl. Phys. Lett., vol. 86, pp. 093104, 2005.
    • (2005) Appl. Phys. Lett. , vol.86 , pp. 093104
    • Grow, R.J.1    Wang, Q.2    Cao, J.3    Wang, D.4    Dai, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.