메뉴 건너뛰기




Volumn 16, Issue 1, 2008, Pages 54-70

Incident detection algorithm based on partial least squares regression

Author keywords

Automatic incident detection (AID); Multi layer feed forward neural network (MLF); Partial least squares regression (PLSR); Receiver operating characteristic (ROC) analysis; Support vector machine (SVM); The area under the ROC (AUC)

Indexed keywords

ALGORITHMS; FEEDFORWARD NEURAL NETWORKS; LEAST SQUARES APPROXIMATIONS; MULTILAYER NEURAL NETWORKS; REGRESSION ANALYSIS;

EID: 38649102211     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2007.06.005     Document Type: Article
Times cited : (57)

References (29)
  • 1
    • 0034648432 scopus 로고    scopus 로고
    • The N-way toolbox for MATLAB
    • Software available on the internet at
    • Andersson C.A., and Bro R. The N-way toolbox for MATLAB. Chemometrics and Intelligent Laboratory Systems 52 (2000) 1-4. http://www.models.kvl.dk/sourcer Software available on the internet at
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.52 , pp. 1-4
    • Andersson, C.A.1    Bro, R.2
  • 2
    • 85029830123 scopus 로고    scopus 로고
    • Bettinger, R., 2003. Cost-sensitive classifier selection using the ROC convex hull method. In: The Second Annual Hawaii International Conference on Statistics and Related Fields, pp. 1-12.
    • Bettinger, R., 2003. Cost-sensitive classifier selection using the ROC convex hull method. In: The Second Annual Hawaii International Conference on Statistics and Related Fields, pp. 1-12.
  • 3
    • 0343998304 scopus 로고    scopus 로고
    • Chang, E.C.P., 1992. A neural network approach to freeway incident detection. In: The 3rd International Conference on Vehicle Navigation and Information Systems (VNIS), pp. 641-647.
    • Chang, E.C.P., 1992. A neural network approach to freeway incident detection. In: The 3rd International Conference on Vehicle Navigation and Information Systems (VNIS), pp. 641-647.
  • 4
    • 85029838376 scopus 로고    scopus 로고
    • Chang, C.C., Lin, C.J., 2001. LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • Chang, C.C., Lin, C.J., 2001. LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
  • 6
    • 15244341838 scopus 로고    scopus 로고
    • Cheu, R.L., Srinivasan, D., Teh, E.T., 2003. Support vector machine models for freeway incident detection. In: Proceedings of Intelligent Transportation Systems, 1, pp. 238-243.
    • Cheu, R.L., Srinivasan, D., Teh, E.T., 2003. Support vector machine models for freeway incident detection. In: Proceedings of Intelligent Transportation Systems, 1, pp. 238-243.
  • 7
    • 4344712898 scopus 로고    scopus 로고
    • El-Feghi, I., Alginahi, Y., Sid-Ahmed, M.A., Ahmadi, M., 2004. Craniofacial landmarks extraction by partial least squares regression. In: Proceedings of the 2004 International Symposium on Circuits and Systems (ISCAS '04) 4, pp. 45-48.
    • El-Feghi, I., Alginahi, Y., Sid-Ahmed, M.A., Ahmadi, M., 2004. Craniofacial landmarks extraction by partial least squares regression. In: Proceedings of the 2004 International Symposium on Circuits and Systems (ISCAS '04) 4, pp. 45-48.
  • 8
    • 85029889464 scopus 로고    scopus 로고
    • Flach, P.A., 2004. Tutorial on the many faces of ROC analysis in machine learning. In: The Twenty-First International Conference on Machine Learning, Canada.
    • Flach, P.A., 2004. Tutorial on the many faces of ROC analysis in machine learning. In: The Twenty-First International Conference on Machine Learning, Canada.
  • 9
    • 85029858449 scopus 로고    scopus 로고
    • Hopley, L., Schalkwyk, J.V., 2001. The magnificent ROC, Available at http://www.anaesthetist.com/mnm/stats/roc/.
    • Hopley, L., Schalkwyk, J.V., 2001. The magnificent ROC, Available at http://www.anaesthetist.com/mnm/stats/roc/.
  • 10
    • 0033310240 scopus 로고    scopus 로고
    • Ikeda, H., Matsuo, T., Kaneko,Y., Tsuji, K., 1999. Abnormal incident detection system employing image processing technology. In: Proceedings of the IEEE International Conference on Intelligent Transportation Systems, pp. 748-752.
    • Ikeda, H., Matsuo, T., Kaneko,Y., Tsuji, K., 1999. Abnormal incident detection system employing image processing technology. In: Proceedings of the IEEE International Conference on Intelligent Transportation Systems, pp. 748-752.
  • 11
    • 10044295837 scopus 로고    scopus 로고
    • Imbault, F., Lebart, K, 2004. A stochastic optimization approach for parameter tuning of support vector machines. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004), vol. 4, pp. 597-600.
    • Imbault, F., Lebart, K, 2004. A stochastic optimization approach for parameter tuning of support vector machines. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004), vol. 4, pp. 597-600.
  • 12
    • 0031389296 scopus 로고    scopus 로고
    • Jiang, Z.F., 1997. Macro and micro freeway automatic incident detection (AID) methods based on image processing. In: The IEEE Conference on Intelligent Transportation Systems, pp. 344-349.
    • Jiang, Z.F., 1997. Macro and micro freeway automatic incident detection (AID) methods based on image processing. In: The IEEE Conference on Intelligent Transportation Systems, pp. 344-349.
  • 13
    • 0035439676 scopus 로고    scopus 로고
    • Classification of freeway traffic patterns for incident detection using constructive probabilistic neural networks
    • Jin X., Srinivasan D., and Cheu R.L. Classification of freeway traffic patterns for incident detection using constructive probabilistic neural networks. IEEE Transaction on Neural Networks 12 5 (2001) 1173-1187
    • (2001) IEEE Transaction on Neural Networks , vol.12 , Issue.5 , pp. 1173-1187
    • Jin, X.1    Srinivasan, D.2    Cheu, R.L.3
  • 14
    • 0036532656 scopus 로고    scopus 로고
    • Development and adaptation of constructive probabilistic neural network in freeway incident detection
    • Jin X., Cheu R.L., and Srinivasan D. Development and adaptation of constructive probabilistic neural network in freeway incident detection. Transportation Research Part C 10 (2002) 121-147
    • (2002) Transportation Research Part C , vol.10 , pp. 121-147
    • Jin, X.1    Cheu, R.L.2    Srinivasan, D.3
  • 16
    • 0034862223 scopus 로고    scopus 로고
    • Kim, Y.S., Yum, B.J., Kim, M., 2001. A hybrid model of partial least squares and artificial neural network for analyzing process monitoring data. In: Proceedings of International Joint Conference on Neural Networks (IJCNN'2001), Washington, DC, USA, pp. 2292-2297.
    • Kim, Y.S., Yum, B.J., Kim, M., 2001. A hybrid model of partial least squares and artificial neural network for analyzing process monitoring data. In: Proceedings of International Joint Conference on Neural Networks (IJCNN'2001), Washington, DC, USA, pp. 2292-2297.
  • 17
    • 0033647286 scopus 로고    scopus 로고
    • Application of genetic algorithm-PLS for feature selection in spectral data sets
    • Leardi R. Application of genetic algorithm-PLS for feature selection in spectral data sets. Journal of Chemometrics 14 (2000) 643-655
    • (2000) Journal of Chemometrics , vol.14 , pp. 643-655
    • Leardi, R.1
  • 18
    • 85029847524 scopus 로고    scopus 로고
    • Macskassy, S.A., Provost, F., 2004. Confidence bands for ROC curves: methods and an empirical study. In: First International Conference on Machine Learning, Canada.
    • Macskassy, S.A., Provost, F., 2004. Confidence bands for ROC curves: methods and an empirical study. In: First International Conference on Machine Learning, Canada.
  • 19
    • 85029850044 scopus 로고    scopus 로고
    • Parkany, E., Xie, C., 2005. A complete review of incident detection algorithms and their deployment: what works and what doesn't. Transportation Center, University of Massachusetts, Technical Report, NETCR37.
    • Parkany, E., Xie, C., 2005. A complete review of incident detection algorithms and their deployment: what works and what doesn't. Transportation Center, University of Massachusetts, Technical Report, NETCR37.
  • 20
    • 24644524609 scopus 로고    scopus 로고
    • Patel, A.C., Markey, M.K, 2005. Comparison of three-class classification performance metrics: a case study in breast cancer CAD. In: Proceedings of Medical Imaging 2005: Image Perception, Observer Performance, and Technology Assessment, Bellingham, WA, vol. 5749, pp. 581-589.
    • Patel, A.C., Markey, M.K, 2005. Comparison of three-class classification performance metrics: a case study in breast cancer CAD. In: Proceedings of Medical Imaging 2005: Image Perception, Observer Performance, and Technology Assessment, Bellingham, WA, vol. 5749, pp. 581-589.
  • 22
    • 0036925065 scopus 로고    scopus 로고
    • Quang, A.T., Zhang, Q.L., Li, X., 2002. Evolving support vector machine parameters. In: Proceedings of International Conference on Machine Learning and Cybernetics, vol.1, pp. 548 - 551.
    • Quang, A.T., Zhang, Q.L., Li, X., 2002. Evolving support vector machine parameters. In: Proceedings of International Conference on Machine Learning and Cybernetics, vol.1, pp. 548 - 551.
  • 23
    • 85029876555 scopus 로고    scopus 로고
    • Ritchie, S.G., Abdulhai, B., 1997. Development testing and evaluation of advanced techniques for freeway incident detection, California PATH Working Paper, UCB-ITS-PWP-97-22, pp. 1-37.
    • Ritchie, S.G., Abdulhai, B., 1997. Development testing and evaluation of advanced techniques for freeway incident detection, California PATH Working Paper, UCB-ITS-PWP-97-22, pp. 1-37.
  • 24
    • 27144554152 scopus 로고    scopus 로고
    • Rojas, S.A., Fernandez-Reyes, D., 2005. Adapting multiple kernel parameters for support vector machines using genetic algorithms. In: The 2005 IEEE Congress on Evolutionary Computation, 1, pp. 626-631.
    • Rojas, S.A., Fernandez-Reyes, D., 2005. Adapting multiple kernel parameters for support vector machines using genetic algorithms. In: The 2005 IEEE Congress on Evolutionary Computation, 1, pp. 626-631.
  • 25
    • 0033681369 scopus 로고    scopus 로고
    • Trivedi, M.M., Mikic, I., Kogut, G., 2000. Distributed video networks for incident detection and management. In: Proceedings of IEEE International Conference on Intelligent Transportation Systems, Dearborn (MI), USA, pp. 155-160.
    • Trivedi, M.M., Mikic, I., Kogut, G., 2000. Distributed video networks for incident detection and management. In: Proceedings of IEEE International Conference on Intelligent Transportation Systems, Dearborn (MI), USA, pp. 155-160.
  • 26
    • 33846009452 scopus 로고    scopus 로고
    • Wang, K.F., Jia, X.W., Tang, S.M., 2005. A survey of vision-based automatic incident detection technology. In: Proceedings of IEEE International Conference on Vehicular Electronics and Safety, pp. 290-295.
    • Wang, K.F., Jia, X.W., Tang, S.M., 2005. A survey of vision-based automatic incident detection technology. In: Proceedings of IEEE International Conference on Vehicular Electronics and Safety, pp. 290-295.
  • 28
    • 85029884780 scopus 로고    scopus 로고
    • VCCLAB (Virtual Computational Chemistry Laboratory), 2001. Partial least squares regression (PLSR). Available at http://146.107.217.178/lab/pls/m_description.html.
    • VCCLAB (Virtual Computational Chemistry Laboratory), 2001. Partial least squares regression (PLSR). Available at http://146.107.217.178/lab/pls/m_description.html.
  • 29
    • 0042664078 scopus 로고    scopus 로고
    • Incident detection using support vector machines
    • Yuan F., and Cheu R.L. Incident detection using support vector machines. Transportation Research Part C 11 (2003) 309-328
    • (2003) Transportation Research Part C , vol.11 , pp. 309-328
    • Yuan, F.1    Cheu, R.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.