메뉴 건너뛰기




Volumn 55, Issue 7, 2010, Pages 1163-1174

Comparison of data-driven modelling techniques for river flow forecasting;Comparaison de techniques de modélisation conditionnée par les données pour la prévision des débits fluviaux

Author keywords

Artificial neural networks; Data driven modelling; Genetic programming; M5 model trees; Streamflow

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CONCEPTUAL MODEL; DATA-DRIVEN; EXTREME EVENTS; HIGHLY NONLINEAR; M5 MODEL TREE; MODEL TREES; MODELLING TECHNIQUES; PREDICTION ACCURACY; REASONABLE ACCURACY; RIVER FLOW; RIVER FLOW FORECASTING; WATER RESOURCES SYSTEMS;

EID: 78650509451     PISSN: 02626667     EISSN: 21503435     Source Type: Journal    
DOI: 10.1080/02626667.2010.512867     Document Type: Article
Times cited : (67)

References (37)
  • 1
    • 50049086912 scopus 로고    scopus 로고
    • Added gains of soil moisture content observations for stream flow predictions using neural networks
    • Anctil, F., Lauzon, N. & Filion, M. (2008) Added gains of soil moisture content observations for stream flow predictions using neural networks. J. Hydrol. 359, 225-234.
    • (2008) J. Hydrol , vol.359 , pp. 225-234
    • Anctil, F.1    Lauzon, N.2    Filion, M.3
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, I: Preliminary concepts
    • ASCE Task Committee
    • ASCE Task Committee (2000) Artificial neural networks in hydrology, I: preliminary concepts. J. Hydrol. Engng. ASCE 5(2), 115-123.
    • (2000) J. Hydrol. Engng. ASCE , vol.5 , Issue.2 , pp. 115-123
  • 3
    • 12144264770 scopus 로고    scopus 로고
    • Neural networks and M5 model trees in modelling water level-discharge relationship
    • Bhattacharya, B. & Solomatine, D. P. (2005) Neural networks and M5 model trees in modelling water level-discharge relationship. Neurocomputing 63, 381-396.
    • (2005) Neurocomputing , vol.63 , pp. 381-396
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 5
    • 3543081432 scopus 로고    scopus 로고
    • Evolving Teams of Predictors with Linear Genetic Programming
    • Brameier, M. & Banzhaf, W. (2001) Evolving Teams of Predictors with Linear Genetic Programming.Genet. Program Evolvable Machines 2(4), 381-407.
    • (2001) Genet. Program Evolvable Machines , vol.2 , Issue.4 , pp. 381-407
    • Brameier, M.1    Banzhaf, W.2
  • 6
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of flow data by artificial neural networks
    • Cigizoglu, H. K. (2003a) Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrol. Sci. J. 48(3), 349-361.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 7
    • 0037783429 scopus 로고    scopus 로고
    • Incorporation of ARMA models into flow forecasting by artificial neural networks
    • Cigizoglu, H. K. (2003b) Incorporation of ARMA models into flow forecasting by artificial neural networks. Environmetrics 14(4), 417-427.
    • (2003) Environmetrics , vol.14 , Issue.4 , pp. 417-427
    • Cigizoglu, H.K.1
  • 8
    • 23044443211 scopus 로고    scopus 로고
    • Application of the Generalized Regression Neural Networks to Intermittent Flow Forecasting and Estimation
    • Cigizoglu, H. K. (2005a) Application of the Generalized Regression Neural Networks to Intermittent Flow Forecasting and Estimation. J. Hydrol. Engng ASCE 10(4), 336-341.
    • (2005) J. Hydrol. Engng ASCE , vol.10 , Issue.4 , pp. 336-341
    • Cigizoglu, H.K.1
  • 9
    • 27944503514 scopus 로고    scopus 로고
    • Generalized regression neural network in monthly flow forecasting
    • Cigizoglu, H. K. (2005b) Generalized regression neural network in monthly flow forecasting. Civil Engng Environ.Syst. 22(2), 71-84.
    • (2005) Civil Engng Environ.Syst , vol.22 , Issue.2 , pp. 71-84
    • Cigizoglu, H.K.1
  • 10
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C. W. & Wilby, R. L. (2001) Hydrological modelling using artificial neural networks. Progr. Phys. Geogr. 25(1), 80-108.
    • (2001) Progr. Phys. Geogr , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 12
    • 37249028164 scopus 로고    scopus 로고
    • Stream flow rate prediction using genetic programming model in a semi-arid coastal water-shed
    • ASCE Conference Proceeding, doi:10.1061/40792(173)352
    • Drounpob, A, Chang, N. B. & Beaman, M. (2005) Stream flow rate prediction using genetic programming model in a semi-arid coastal water-shed. In: Proceeding of World Water Congress (Alaska). ASCE Conference Proceeding 173, 352, doi:10.1061/40792(173)352.
    • (2005) Proceeding of World Water Congress (Alaska) , vol.173 , pp. 352
    • Drounpob, A.1    Chang, N.B.2    Beaman, M.3
  • 13
    • 38849167375 scopus 로고    scopus 로고
    • Comparison of artificial intelligence techniques for river flow forecasting
    • Firat, M. (2008) Comparison of artificial intelligence techniques for river flow forecasting. Hydrol. Earth System Sci. 12, 123-139.
    • (2008) Hydrol. Earth System Sci , vol.12 , pp. 123-139
    • Firat, M.1
  • 14
    • 70349753109 scopus 로고    scopus 로고
    • Linear genetic programming for time series modeling of daily flow rate
    • Guven, A. (2009) Linear genetic programming for time series modeling of daily flow rate. J. Earth System Sci. Indian Acad. Sci. 118(2), 137-146.
    • (2009) J. Earth System Sci. Indian Acad. Sci , vol.118 , Issue.2 , pp. 137-146
    • Guven, A.1
  • 16
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • Jain, A. & Kumar, A. M. (2007) Hybrid neural network models for hydrologic time series forecasting. App. Soft Comput. 7, 585-592.
    • (2007) App. Soft Comput , vol.7 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 17
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi, O. (2004) River flow modeling using artificial neural networks. J. Hydrol. Engng ASCE 9(1), 60-63.
    • (2004) J. Hydrol. Engng ASCE , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 18
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kisi, O. (2007) Streamflow forecasting using different artificial neural network algorithms. J. Hydrol. Engng ASCE 12(5), 532-539.
    • (2007) J. Hydrol. Engng ASCE , vol.12 , Issue.5 , pp. 532-539
    • Kisi, O.1
  • 19
    • 34548425056 scopus 로고    scopus 로고
    • Comparison of different ANN techniques in river flow prediction
    • Kişi, O. & Cigizoglu, H. K. (2007) Comparison of different ANN techniques in river flow prediction. Civil Engng Environ.Systems 24(3), 211-231.
    • (2007) Civil Engng Environ.Systems , vol.24 , Issue.3 , pp. 211-231
    • Kişi, O.1    Cigizoglu, H.K.2
  • 20
    • 40349116048 scopus 로고    scopus 로고
    • Medium-range flow prediction for the Nile: A comparison of stochastic and deterministic methods
    • Koutsoyiaanis, D., Yao, H., Georgakakos, A. (2008) Medium-range flow prediction for the Nile: a comparison of stochastic and deterministic methods. Hydrol. Sci. J. 53(1), 142-164.
    • (2008) Hydrol. Sci. J , vol.53 , Issue.1 , pp. 142-164
    • Koutsoyiaanis, D.1    Yao, H.2    Georgakakos, A.3
  • 22
    • 46749151701 scopus 로고    scopus 로고
    • Soft computing approach for real-time estimation of missing wave heights
    • Londhe, S. N. (2008) Soft computing approach for real-time estimation of missing wave heights. Ocean Engng 35, 1080-1089.
    • (2008) Ocean Engng , vol.35 , pp. 1080-1089
    • Londhe, S.N.1
  • 23
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H. R. & Dandy, G. C. (2000) Neural networks for prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ. Model. Soft. 15, 101-124.
    • (2000) Environ. Model. Soft , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 24
    • 0009558275 scopus 로고    scopus 로고
    • Efficient evolution of machine code for CISC architectures using blocks and homologous crossover
    • L. Spector, W. B. Langdon, U.-M. O'Reilly & P. J Angeline, eds). Cambridge, MA: The MIT Press
    • Nordin, J. P., Francone, F. & Banzhaf, W. (1998) Efficient evolution of machine code for CISC architectures using blocks and homologous crossover. In: Advances in Genetic Programming, vol. 3 (L. Spector, W. B. Langdon, U.-M. O'Reilly & P. J Angeline, eds). Cambridge, MA: The MIT Press.
    • (1998) Advances In Genetic Programming , vol.3
    • Nordin, J.P.1    Francone, F.2    Banzhaf, W.3
  • 26
    • 31444443313 scopus 로고    scopus 로고
    • Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India
    • Raghuwanshi, N. S., Singh, R. & Reddy, L. S. (2006) Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India. J. Hydrol. Engng ASCE 11(1), 71-79.
    • (2006) J. Hydrol. Engng ASCE , vol.11 , Issue.1 , pp. 71-79
    • Raghuwanshi, N.S.1    Singh, R.2    Reddy, L.S.3
  • 27
    • 34047254142 scopus 로고    scopus 로고
    • Suitability of different neural networks in daily flow forecasting
    • Singh, P. & Deo, M. C. (2007) Suitability of different neural networks in daily flow forecasting. Appl. Soft Comput. 7, 968-978.
    • (2007) Appl. Soft Comput , vol.7 , pp. 968-978
    • Singh, P.1    Deo, M.C.2
  • 28
    • 40049084636 scopus 로고    scopus 로고
    • Genetic programming approach for flood routing in natural Channels
    • Sivapragasam, C, Maheswaran, R & Veena, V. (2008) Genetic programming approach for flood routing in natural Channels. Hydrol. Processes 22, 623-628.
    • (2008) Hydrol. Processes , vol.22 , pp. 623-628
    • Sivapragasam, C.1    Maheswaran, R.2    Veena, V.3
  • 29
    • 0038456166 scopus 로고    scopus 로고
    • Data driven modelling: Paradigm, methods, experiences
    • (Cardiff, UK) (R. A. Falconer, B. Lin, E. L. Harris, C. A. M. E. Wilson, I. D. Cluckie, D. Han, J. P. Davis & S. Heslop, eds), UK: IWA Publishing
    • Solomatine, D. P. (2002) Data driven modelling: paradigm, methods, experiences. In: Proceedings of Fifth International Conference on Hydroinformatics, (Cardiff, UK) (R. A. Falconer, B. Lin, E. L. Harris, C. A. M. E. Wilson, I. D. Cluckie, D. Han, J. P. Davis & S. Heslop, eds), 757-763. UK: IWA Publishing.
    • (2002) Proceedings of Fifth International Conference On Hydroinformatics , pp. 757-763
    • Solomatine, D.P.1
  • 30
    • 0037565156 scopus 로고    scopus 로고
    • Model tree as an alternative to neural network in rainfall-runoff modeling
    • Solomatine, D. P. & Dulal, K. (2003) Model tree as an alternative to neural network in rainfall-runoff modeling. Hydrol. Sci. J. 48 (3), 399-411.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.2
  • 31
    • 39449089195 scopus 로고    scopus 로고
    • Data-driven modelling: Some past experiences and new approaches
    • Solomatine, D. P. & Ostfeld, A. (2008) Data-driven modelling: some past experiences and new approaches. J. Hydroinf. 10(1), 3-22.
    • (2008) J. Hydroinf , vol.10 , Issue.1 , pp. 3-22
    • Solomatine, D.P.1    Ostfeld, A.2
  • 32
    • 39449115775 scopus 로고    scopus 로고
    • Flexible and optimal M5 model trees with applications to flow predictions
    • (June 2004), Singapore: World Scientific
    • Solomatine, D. P. & Siek, M. B. (2004) Flexible and optimal M5 model trees with applications to flow predictions. In: Proceedings Of Sixth International Conference on Hydroinformatics (June 2004), 1719-1726. Singapore: World Scientific.
    • (2004) Proceedings of Sixth International Conference On Hydroinformatics , pp. 1719-1726
    • Solomatine, D.P.1    Siek, M.B.2
  • 33
    • 10244261532 scopus 로고    scopus 로고
    • M5 model trees and neural networks: Application to flood forecasting in the Upper Reach of the Huai River in China
    • Solomatine, D. P. & Xue, Y. (2004) M5 model trees and neural networks: application to flood forecasting in the Upper Reach of the Huai River in China. J. Hydrol. Engng ASCE 9(6), 491-501.
    • (2004) J. Hydrol. Engng ASCE , vol.9 , Issue.6 , pp. 491-501
    • Solomatine, D.P.1    Xue, Y.2
  • 34
    • 0037470339 scopus 로고    scopus 로고
    • Improving peak flow estimates in artificial neural network river flow models
    • Sudheer, K. P., Nayak, P. C. & Ramasastri, K. S. (2003) Improving peak flow estimates in artificial neural network river flow models. Hydrol. Processes 17, 677-680.
    • (2003) Hydrol. Processes , vol.17 , pp. 677-680
    • Sudheer, K.P.1    Nayak, P.C.2    Ramasastri, K.S.3
  • 35
    • 0034174356 scopus 로고    scopus 로고
    • Hydrological forecasting using neural networks
    • Thirumalaiah, K. & Deo, M. C. (2000) Hydrological forecasting using neural networks. J. Hydrol. Engng ASCE 5(2), 180-189.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 180-189
    • Thirumalaiah, K.1    Deo, M.C.2
  • 36
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar, A. S. & Johnson, P. A. (1999) Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Engng ASCE 4(3), 232-239.
    • (1999) J. Hydrol. Engng ASCE , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 37
    • 33847223427 scopus 로고    scopus 로고
    • Using time-delay neural network combined with genetic algorithms to predict runoff level of Linshan watershed, Sichuan, China
    • Wang, S. K., Lu, W. Z., Cao, S. Y. & Fang, D. (2007) Using time-delay neural network combined with genetic algorithms to predict runoff level of Linshan watershed, Sichuan, China. J. Hydrol. Engng ASCE 12(2), 231-236.
    • (2007) J. Hydrol. Engng ASCE , vol.12 , Issue.2 , pp. 231-236
    • Wang, S.K.1    Lu, W.Z.2    Cao, S.Y.3    Fang, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.