메뉴 건너뛰기




Volumn 31, Issue 1, 2011, Pages 92-104

Intranuclear function for protein phosphatase 2A: Pph21 and Pph22 are required for rapamycin-induced GATA factor binding to the DAL5 promoter in yeast

Author keywords

[No Author keywords available]

Indexed keywords

FUNGAL PROTEIN; GLUTAMINE; PHOSPHOPROTEIN PHOSPHATASE; PHOSPHOPROTEIN PHOSPHATASE 2A; PHOSPHOPROTEIN PHOSPHATASE CDC55; PHOSPHOPROTEIN PHOSPHATASE PPH21; PHOSPHOPROTEIN PHOSPHATASE PPH22; PHOSPHOPROTEIN PHOSPHATASE RTS1; PROTEIN DAL5; RAPAMYCIN; TRANSCRIPTION FACTOR GAT1; TRANSCRIPTION FACTOR GATA; TRANSCRIPTION FACTOR GLN3; UNCLASSIFIED DRUG;

EID: 78751694872     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.00482-10     Document Type: Article
Times cited : (19)

References (55)
  • 1
    • 0033540030 scopus 로고    scopus 로고
    • The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors
    • Beck, T., and M. N. Hall. 1999. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689-692.
    • (1999) Nature , vol.402 , pp. 689-692
    • Beck, T.1    Hall, M.N.2
  • 3
    • 0029785920 scopus 로고    scopus 로고
    • Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae
    • Blinder, D., P. W. Coschigano, and B. Magasanik. 1996. Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae. J. Bacteriol. 178:4734-4736. (Pubitemid 26262268)
    • (1996) Journal of Bacteriology , vol.178 , Issue.15 , pp. 4734-4736
    • Blinder, D.1    Coschigano, P.W.2    Magasanik, B.3
  • 4
    • 0033573016 scopus 로고    scopus 로고
    • The TOR signaling cascade regulates gene expression in response to nutrients
    • Cardenas, M. E., N. S. Cutler, M. C. Lorenz, C. J. Di Como, and J. Heitman. 1999. The TOR signaling cascade regulates gene expression in response to nutrients Genes Dev. 13:3271-3279.
    • (1999) Genes Dev. , vol.13 , pp. 3271-3279
    • Cardenas, M.E.1    Cutler, N.S.2    Lorenz, M.C.3    Di Como, C.J.4    Heitman, J.5
  • 5
    • 0035816673 scopus 로고    scopus 로고
    • Phosphorylation regulates the interaction between Gln3p and the nuclear import factor Srp1p
    • Carvalho, J., P. G. Bertram, S. R. Wente, and X. F. Zheng. 2001. Phosphorylation regulates the interaction between Gln3p and the nuclear import factor Srp1p. J. Biol. Chem. 276:25359-25365.
    • (2001) J. Biol. Chem. , vol.276 , pp. 25359-25365
    • Carvalho, J.1    Bertram, P.G.2    Wente, S.R.3    Zheng, X.F.4
  • 6
    • 0037930811 scopus 로고    scopus 로고
    • Domains of Gln3p interacting with karyopherins, Ure2p, and the target of rapamycin protein
    • Carvalho, J., and X. F. Zheng. 2003. Domains of Gln3p interacting with karyopherins, Ure2p, and the target of rapamycin protein. J. Biol. Chem. 278:16878-16886.
    • (2003) J. Biol. Chem. , vol.278 , pp. 16878-16886
    • Carvalho, J.1    Zheng, X.F.2
  • 7
    • 77956511880 scopus 로고    scopus 로고
    • The mTOR pathway: A new target in cancer therapy
    • 12 April 2010, posting date. Epub ahead of print
    • Ciuffreda, L., C. Di Sanza, and M. Milella. 12 April 2010, posting date. The mTOR pathway: a new target in cancer therapy. Curr. Cancer Drug Targets. [Epub ahead of print.]
    • Curr. Cancer Drug Targets
    • Ciuffreda, L.1    Di Sanza, C.2    Milella, M.3
  • 8
    • 0001840999 scopus 로고
    • Nitrogen metabolism in Saccharomyces cerevisiae
    • J. N. Strathern, E. W. Jones, and J. R. Broach (ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
    • Cooper, T. G. 1982. Nitrogen metabolism in Saccharomyces cerevisiae, p. 39-99. In J. N. Strathern, E. W. Jones, and J. R. Broach (ed.), Molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
    • (1982) Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression , pp. 39-99
    • Cooper, T.G.1
  • 9
    • 17644369410 scopus 로고    scopus 로고
    • Integrated regulation of the nitrogen-carbon interface
    • Cooper, T. G. 2004. Integrated regulation of the nitrogen-carbon interface. Top. Curr. Genet. 7:225-257.
    • (2004) Top. Curr. Genet. , vol.7 , pp. 225-257
    • Cooper, T.G.1
  • 10
    • 1642266344 scopus 로고    scopus 로고
    • Gln3 phosphorylation and intracellular localization in nutrient limitation and starvation differ from those generated by rapamycin inhibition of Tor1/2 in Saccharomyces cerevisiae
    • Cox, K. H., A. Kulkarni, J. J. Tate, and T. G. Cooper. 2004. Gln3 phosphorylation and intracellular localization in nutrient limitation and starvation differ from those generated by rapamycin inhibition of Tor1/2 in Saccharomyces cerevisiae. J. Biol. Chem. 279:10270-10278.
    • (2004) J. Biol. Chem. , vol.279 , pp. 10270-10278
    • Cox, K.H.1    Kulkarni, A.2    Tate, J.J.3    Cooper, T.G.4
  • 11
    • 0034625341 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p
    • Cox, K. H., R. Rai, M. Distler, J. R. Daugherty, J. A. Coffman, and T. G. Cooper. 2000. Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p. J. Biol. Chem. 275:17611-17618.
    • (2000) J. Biol. Chem. , vol.275 , pp. 17611-17618
    • Cox, K.H.1    Rai, R.2    Distler, M.3    Daugherty, J.R.4    Coffman, J.A.5    Cooper, T.G.6
  • 12
    • 0037020146 scopus 로고    scopus 로고
    • Cytoplasmic compartmentation of Gln3 during nitrogen catabolite repression and the mechanism of its nuclear localization during carbon starvation in Saccharomyces cerevisiae
    • Cox, K. H., J. J. Tate, and T. G. Cooper. 2002. Cytoplasmic compartmentation of Gln3 during nitrogen catabolite repression and the mechanism of its nuclear localization during carbon starvation in Saccharomyces cerevisiae. J. Biol. Chem. 277:37559-37566.
    • (2002) J. Biol. Chem. , vol.277 , pp. 37559-37566
    • Cox, K.H.1    Tate, J.J.2    Cooper, T.G.3
  • 13
    • 2442475353 scopus 로고    scopus 로고
    • Actin cytoskeleton is required for nuclear accumulation of Gln3 in response to nitrogen limitation but not rapamycin treatment in Saccharomyces cerevisiae
    • Cox, K. H., J. J. Tate, and T. G. Cooper. 2004. Actin cytoskeleton is required for nuclear accumulation of Gln3 in response to nitrogen limitation but not rapamycin treatment in Saccharomyces cerevisiae. J. Biol. Chem. 279:19294-19301.
    • (2004) J. Biol. Chem. , vol.279 , pp. 19294-19301
    • Cox, K.H.1    Tate, J.J.2    Cooper, T.G.3
  • 14
    • 0037076314 scopus 로고    scopus 로고
    • The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine
    • Crespo, J. L., T. Powers, B. Fowler, and M. N. Hall. 2002. The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc. Natl. Acad. Sci. U. S. A. 99:6784-6789.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 6784-6789
    • Crespo, J.L.1    Powers, T.2    Fowler, B.3    Hall, M.N.4
  • 15
    • 0034640545 scopus 로고    scopus 로고
    • Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae
    • Cunningham, T. S., R. Andhare, and T. G. Cooper. 2000. Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae. J. Biol. Chem. 275:14408-14414.
    • (2000) J. Biol. Chem. , vol.275 , pp. 14408-14414
    • Cunningham, T.S.1    Andhare, R.2    Cooper, T.G.3
  • 16
    • 0029665751 scopus 로고    scopus 로고
    • G1n3p is capable of binding to UASNTR elements and activating transcription in Saccharomyces cerevisiae
    • Cunningham, T. S., V. V. Svetlov, R. Rai, W. Smart, and T. G. Cooper. 1996. G1n3p is capable of binding to UASNTR elements and activating transcription in Saccharomyces cerevisiae. J. Bacteriol. 178:3470-3479.
    • (1996) J. Bacteriol. , vol.178 , pp. 3470-3479
    • Cunningham, T.S.1    Svetlov, V.V.2    Rai, R.3    Smart, W.4    Cooper, T.G.5
  • 17
    • 72149090432 scopus 로고    scopus 로고
    • Evaluating temsirolimus activity in multiple tumors: A review of clinical trials
    • Dancey, J. E., R. Curiel, and J. Purvis. 2009. Evaluating temsirolimus activity in multiple tumors: a review of clinical trials. Semin. Oncol. 36(Suppl. 3): S46-S58.
    • (2009) Semin. Oncol. , vol.36 , Issue.SUPPL. 3
    • Dancey, J.E.1    Curiel, R.2    Purvis, J.3
  • 18
    • 33750042303 scopus 로고    scopus 로고
    • Cell growth control: Little eukaryotes make big contributions
    • DOI 10.1038/sj.onc.1209884, PII 1209884
    • De Virgilio, C., and R. Loewith. 2006. Cell growth control: little eukaryotes make big contributions. Oncogene 25:6392-6415. (Pubitemid 44582284)
    • (2006) Oncogene , vol.25 , Issue.48 , pp. 6392-6415
    • De, V.C.1    Loewith, R.2
  • 19
    • 0029808294 scopus 로고    scopus 로고
    • Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases
    • Di Como, C. J., and K. T. Arndt. 1996. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev. 10:1904-1916.
    • (1996) Genes Dev. , vol.10 , pp. 1904-1916
    • Di Como, C.J.1    Arndt, K.T.2
  • 20
    • 17344381954 scopus 로고    scopus 로고
    • Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast
    • Düvel, K., A. Santhanam, S. Garrett, L. Schneper, and J. R. Broach. 2003. Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast. Mol. Cell 11:1467-1478.
    • (2003) Mol. Cell , vol.11 , pp. 1467-1478
    • Düvel, K.1    Santhanam, A.2    Garrett, S.3    Schneper, L.4    Broach, J.R.5
  • 21
    • 2342545519 scopus 로고    scopus 로고
    • Target of rapamycin (TOR): An integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression
    • Fingar, D. C., and J. Blenis. 2004. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23:3151-3171.
    • (2004) Oncogene , vol.23 , pp. 3151-3171
    • Fingar, D.C.1    Blenis, J.2
  • 22
    • 62549113091 scopus 로고    scopus 로고
    • Nitrogen catabolite repression-sensitive transcription as a readout of Tor pathway regulation: The genetic background, reporter gene and GATA factor assayed determine the outcomes
    • Erratum, 182:927, 2010
    • Georis, I., A. Feller, J. J. Tate, T. G. Cooper, and E. Dubois. 2009. Nitrogen catabolite repression-sensitive transcription as a readout of Tor pathway regulation: the genetic background, reporter gene and GATA factor assayed determine the outcomes. Genetics 181:861-874. (Erratum, 182:927, 2010.)
    • (2009) Genetics , vol.181 , pp. 861-874
    • Georis, I.1    Feller, A.2    Tate, J.J.3    Cooper, T.G.4    Dubois, E.5
  • 23
    • 67650093251 scopus 로고    scopus 로고
    • The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repressionsensitive gene activation
    • Georis, I., A. Feller, F. Vierendeels, and E. Dubois. 2009. The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repressionsensitive gene activation. Mol. Cell. Biol. 29:3803-3815.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 3803-3815
    • Georis, I.1    Feller, A.2    Vierendeels, F.3    Dubois, E.4
  • 24
    • 44049095588 scopus 로고    scopus 로고
    • Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae
    • Georis, I., J. J. Tate, T. G. Cooper, and E. Dubois. 2008. Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae. J. Biol. Chem. 283:8919-8929.
    • (2008) J. Biol. Chem. , vol.283 , pp. 8919-8929
    • Georis, I.1    Tate, J.J.2    Cooper, T.G.3    Dubois, E.4
  • 25
    • 0033592983 scopus 로고    scopus 로고
    • Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins
    • Hardwick, J. S., F. G. Kuruvilla, J. K. Tong, A. F. Shamji, and S. L. Schreiber. 1999. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc. Natl. Acad. Sci. U. S. A. 96:14866-14870.
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 14866-14870
    • Hardwick, J.S.1    Kuruvilla, F.G.2    Tong, J.K.3    Shamji, A.F.4    Schreiber, S.L.5
  • 26
    • 38349075017 scopus 로고    scopus 로고
    • Protein phosphatase Siw14 controls intracellular localization of Gln3 in cooperation with Npr1 kinase in Saccharomyces cerevisiae
    • Hirasaki, M., Y. Kaneko, and S. Harashima. 2008. Protein phosphatase Siw14 controls intracellular localization of Gln3 in cooperation with Npr1 kinase in Saccharomyces cerevisiae. Gene 409:34-43.
    • (2008) Gene , vol.409 , pp. 34-43
    • Hirasaki, M.1    Kaneko, Y.2    Harashima, S.3
  • 28
    • 0032750741 scopus 로고    scopus 로고
    • Nitrogen catabolite repression in Saccharomyces cerevisiae
    • Hofman-Bang, J. 1999. Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol. Biotechnol. 12:35-73.
    • (1999) Mol. Biotechnol. , vol.12 , pp. 35-73
    • Hofman-Bang, J.1
  • 29
    • 77954218447 scopus 로고    scopus 로고
    • Molecularly targeted therapy in hepatocellular carcinoma
    • 3 April 2010, posting date. Epub ahead of print
    • Huynh, H. 3 April 2010, posting date. Molecularly targeted therapy in hepatocellular carcinoma. Biochem. Pharmacol. [Epub ahead of print.]
    • Biochem. Pharmacol
    • Huynh, H.1
  • 30
    • 63149136365 scopus 로고    scopus 로고
    • Tuberous sclerosis complex, implication from a rare genetic disease to common cancer treatment
    • Inoki, K., and K. L. Guan. 2009. Tuberous sclerosis complex, implication from a rare genetic disease to common cancer treatment. Hum. Mol. Genet. 18:R94-R100.
    • (2009) Hum. Mol. Genet. , vol.18
    • Inoki, K.1    Guan, K.L.2
  • 31
    • 0035930339 scopus 로고    scopus 로고
    • TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway
    • Jacinto, E., B. Guo, K. T. Arndt, T. Schmelzle, and M. N. Hall. 2001. TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway. Mol. Cell 8:1017-1026.
    • (2001) Mol. Cell , vol.8 , pp. 1017-1026
    • Jacinto, E.1    Guo, B.2    Arndt, K.T.3    Schmelzle, T.4    Hall, M.N.5
  • 32
    • 33745118350 scopus 로고    scopus 로고
    • Regulation of the cell cycle by protein phosphatase 2A in Saccharomyces cerevisiae
    • Jiang, Y. 2006. Regulation of the cell cycle by protein phosphatase 2A in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70:440-449.
    • (2006) Microbiol. Mol. Biol. Rev. , vol.70 , pp. 440-449
    • Jiang, Y.1
  • 33
    • 0033577745 scopus 로고    scopus 로고
    • Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast
    • Jiang, Y., and J. R. Broach. 1999. Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J. 18:2782-2792.
    • (1999) EMBO J. , vol.18 , pp. 2782-2792
    • Jiang, Y.1    Broach, J.R.2
  • 34
    • 0035943726 scopus 로고    scopus 로고
    • Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae
    • Kulkarni, A., A. T. Abul-Hamd, R. Rai, H. El Berry, and T. G. Cooper. 2001. Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae. J. Biol. Chem. 276:32136-32144.
    • (2001) J. Biol. Chem. , vol.276 , pp. 32136-32144
    • Kulkarni, A.1    Abul-Hamd, A.T.2    Rai, R.3    El Berry, H.4    Cooper, T.G.5
  • 35
    • 33645092389 scopus 로고    scopus 로고
    • Differing responses of Gat1 and Gln3 phosphorylation and localization to rapamycin and methionine sulfoximine treatment in Saccharomyces cerevisiae
    • Kulkarni, A., T. D. Buford, R. Rai, and T. G. Cooper. 2006. Differing responses of Gat1 and Gln3 phosphorylation and localization to rapamycin and methionine sulfoximine treatment in Saccharomyces cerevisiae. FEMS Yeast Res. 6:218-229.
    • (2006) FEMS Yeast Res. , vol.6 , pp. 218-229
    • Kulkarni, A.1    Buford, T.D.2    Rai, R.3    Cooper, T.G.4
  • 36
    • 0031820288 scopus 로고    scopus 로고
    • Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
    • Longtine, M. S., A. McKenzie III, D. J. Demarini, N. G. Shah, A. Wach, A. Brachat, P. Philippsen, and J. R. Pringle. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953-961.
    • (1998) Yeast , vol.14 , pp. 953-961
    • Longtine, M.S.1    McKenzie III, A.2    Demarini, D.J.3    Shah, N.G.4    Wach, A.5    Brachat, A.6    Philippsen, P.7    Pringle, J.R.8
  • 37
    • 0037094434 scopus 로고    scopus 로고
    • Nitrogen regulation in Saccharomyces cerevisiae
    • Magasanik, B., and C. A. Kaiser. 2002. Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1-18.
    • (2002) Gene , vol.290 , pp. 1-18
    • Magasanik, B.1    Kaiser, C.A.2
  • 38
    • 60549096247 scopus 로고    scopus 로고
    • Aktdependent and -independent mechanisms of mTOR regulation in cancer
    • 7 January 2009, posting date. Epub ahead of print
    • Memmott, R. M., and P. A. Dennis. 7 January 2009, posting date. Aktdependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal. 21:656-664. [Epub ahead of print.]
    • Cell Signal. , vol.21 , pp. 656-664
    • Memmott, R.M.1    Dennis, P.A.2
  • 39
    • 66949161151 scopus 로고    scopus 로고
    • How robust is your data? New rules for the presentation of statistics
    • Nature Cell Biology
    • Nature Cell Biology. 2009. How robust is your data? New rules for the presentation of statistics. Nature Cell Biol. 11:667.
    • (2009) Nature Cell Biol. , vol.11 , pp. 667
  • 40
    • 44449165125 scopus 로고    scopus 로고
    • Nuclear translocation of Gln3 in response to nutrient signals requires Golgi-to-endosome trafficking in Saccharomyces cerevisiae
    • Puria, R., S. A. Zurita-Martinez, and M. E. Cardenas. 2008. Nuclear translocation of Gln3 in response to nutrient signals requires Golgi-to-endosome trafficking in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 105:7194-7199.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 7194-7199
    • Puria, R.1    Zurita-Martinez, S.A.2    Cardenas, M.E.3
  • 41
    • 0042322392 scopus 로고    scopus 로고
    • Nutrient signaling through TOR kinases controls gene expression and cellular differentiation in fungi
    • Rohde, J. R., and M. E. Cardenas. 2004. Nutrient signaling through TOR kinases controls gene expression and cellular differentiation in fungi. Curr. Top. Microbiol. Immunol. 279:53-72.
    • (2004) Curr. Top. Microbiol. Immunol. , vol.279 , pp. 53-72
    • Rohde, J.R.1    Cardenas, M.E.2
  • 43
    • 0034649569 scopus 로고    scopus 로고
    • Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins
    • Shamji, A. F., F. G. Kuruvilla, and S. L. Schreiber. 2000. Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Curr. Biol. 10:1574-1581.
    • (2000) Curr. Biol. , vol.10 , pp. 1574-1581
    • Shamji, A.F.1    Kuruvilla, F.G.2    Schreiber, S.L.3
  • 44
    • 34547121478 scopus 로고    scopus 로고
    • Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation
    • Tate, J. J., and T. G. Cooper. 2007. Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation. J. Biol. Chem. 282:18467-18480.
    • (2007) J. Biol. Chem. , vol.282 , pp. 18467-18480
    • Tate, J.J.1    Cooper, T.G.2
  • 45
    • 55349124354 scopus 로고    scopus 로고
    • Formalin can alter the intracellular localization of some transcription factors in Saccharomyces cerevisiae
    • Tate, J. J., and T. G. Cooper. 2008. Formalin can alter the intracellular localization of some transcription factors in Saccharomyces cerevisiae. FEMS Yeast Res. 8:1223-1235.
    • (2008) FEMS Yeast Res. , vol.8 , pp. 1223-1235
    • Tate, J.J.1    Cooper, T.G.2
  • 46
    • 33846007281 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Sit4 phosphatase is active irrespective of the nitrogen source provided, and Gln3 phosphorylation levels become nitrogen source-responsive in a sit4-deleted strain
    • Tate, J. J., A. Feller, E. Dubois, and T. G. Cooper. 2006. Saccharomyces cerevisiae Sit4 phosphatase is active irrespective of the nitrogen source provided, and Gln3 phosphorylation levels become nitrogen source-responsive in a sit4-deleted strain. J. Biol. Chem. 281:37980-37992.
    • (2006) J. Biol. Chem. , vol.281 , pp. 37980-37992
    • Tate, J.J.1    Feller, A.2    Dubois, E.3    Cooper, T.G.4
  • 47
    • 77952934628 scopus 로고    scopus 로고
    • Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae
    • Tate, J. J., I. Georis, E. Dubois, and T. G. Cooper. 2010. Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae. J. Biol. Chem. 285:17880-17895.
    • (2010) J. Biol. Chem. , vol.285 , pp. 17880-17895
    • Tate, J.J.1    Georis, I.2    Dubois, E.3    Cooper, T.G.4
  • 48
    • 59049104862 scopus 로고    scopus 로고
    • Rapamycin-induced Gln3 dephosphorylation is insufficient for nuclear localization: Sit4 and PP2A phosphatases are regulated and function differently
    • Tate, J. J., I. Georis, A. Feller, E. Dubois, and T. G. Cooper. 2009. Rapamycin-induced Gln3 dephosphorylation is insufficient for nuclear localization: Sit4 and PP2A phosphatases are regulated and function differently. J. Biol. Chem. 284:2522-2534.
    • (2009) J. Biol. Chem. , vol.284 , pp. 2522-2534
    • Tate, J.J.1    Georis, I.2    Feller, A.3    Dubois, E.4    Cooper, T.G.5
  • 49
    • 22844440741 scopus 로고    scopus 로고
    • Methionine sulfoximine treatment and carbon starvation elicit Snf1-independent phosphorylation of the transcription activator Gln3 in Saccharomyces cerevisiae
    • Erratum, 282:13139, 2007
    • Tate, J. J., R. Rai, and T. G. Cooper. 2005. Methionine sulfoximine treatment and carbon starvation elicit Snf1-independent phosphorylation of the transcription activator Gln3 in Saccharomyces cerevisiae. J. Biol. Chem. 280:27195-27204. (Erratum, 282:13139, 2007.)
    • (2005) J. Biol. Chem. , vol.280 , pp. 27195-27204
    • Tate, J.J.1    Rai, R.2    Cooper, T.G.3
  • 50
    • 14244253120 scopus 로고    scopus 로고
    • Specific interactions of PP2A and PP2A-like phosphatases with the yeast PTPA homologues, Ypa1 and Ypa2
    • Van Hoof, C., E. Martens, S. Longin, J. Jordens, I. Stevens, V. Janssens, and J. Goris. 2005. Specific interactions of PP2A and PP2A-like phosphatases with the yeast PTPA homologues, Ypa1 and Ypa2. Biochem. J. 386:93-102.
    • (2005) Biochem. J. , vol.386 , pp. 93-102
    • Van Hoof, C.1    Martens, E.2    Longin, S.3    Jordens, J.4    Stevens, I.5    Janssens, V.6    Goris, J.7
  • 51
    • 0029871347 scopus 로고    scopus 로고
    • PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae
    • DOI 10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2- C
    • Wach, A. 1996. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12:259-265. (Pubitemid 26077146)
    • (1996) Yeast , vol.12 , Issue.3 , pp. 259-265
    • Wach, A.1
  • 52
    • 0344824568 scopus 로고    scopus 로고
    • Interaction with Tap42 is required for the essential function of Sit4 and type 2A phosphatases
    • Wang, H., X. Wang, and Y. Jiang. 2003. Interaction with Tap42 is required for the essential function of Sit4 and type 2A phosphatases. Mol. Biol. Cell 14:4342-4351.
    • (2003) Mol. Biol. Cell , vol.14 , pp. 4342-4351
    • Wang, H.1    Wang, X.2    Jiang, Y.3
  • 53
    • 33747626107 scopus 로고    scopus 로고
    • Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1
    • DOI 10.1038/sj.emboj.7601239, PII 7601239
    • Yan, G., X. Shen, and Y. Jiang. 2006. Rapamycin activates Tap42-associated phosphatase by abrogating their association with Tor complex 1. EMBO J. 25:3546-3555. (Pubitemid 44264865)
    • (2006) EMBO Journal , vol.25 , Issue.15 , pp. 3546-3555
    • Yan, G.1    Shen, X.2    Jiang, Y.3
  • 55
    • 0031596416 scopus 로고    scopus 로고
    • Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway
    • Zaragoza, D., A. Ghavidel, J. Heitman, and M. C. Schultz. 1998. Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol. Cell. Biol. 18:4463-4470.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 4463-4470
    • Zaragoza, D.1    Ghavidel, A.2    Heitman, J.3    Schultz, M.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.