메뉴 건너뛰기




Volumn 178, Issue 12, 1996, Pages 3470-3479

Gln3p Is capable of binding to UASNTR elements and activating transcription in Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

ESCHERICHIA COLI; SACCHAROMYCES CEREVISIAE;

EID: 0029665751     PISSN: 00219193     EISSN: None     Source Type: Journal    
DOI: 10.1128/jb.178.12.3470-3479.1996     Document Type: Article
Times cited : (45)

References (58)
  • 3
    • 0025968768 scopus 로고
    • Proline-independent binding of PUT3 transcriptional activator protein detected by footprinting in vivo
    • Axelrod, J. D., J. Majors, and M. C. Brandriss. 1991. Proline-independent binding of PUT3 transcriptional activator protein detected by footprinting in vivo. Mol. Cell. Biol. 11:564-567.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 564-567
    • Axelrod, J.D.1    Majors, J.2    Brandriss, M.C.3
  • 4
    • 0024379174 scopus 로고
    • Three regulatory systems control expression of glutamine synthetase in Saccharomyces cerevisiae at the level of transcription
    • Benjamin, P. A., J. Wu, A. P. Mitchell, and B. Magasanik. 1989. Three regulatory systems control expression of glutamine synthetase in Saccharomyces cerevisiae at the level of transcription. Mol. Gen. Genet. 217:370-377.
    • (1989) Mol. Gen. Genet. , vol.217 , pp. 370-377
    • Benjamin, P.A.1    Wu, J.2    Mitchell, A.P.3    Magasanik, B.4
  • 5
    • 0029070939 scopus 로고
    • Recognition of nitrogen-responsive upstream activation sequences of Saccharomyces cerevisiae by the product of the GLN3 gene
    • Blinder, D., and B. Magasanik. 1995. Recognition of nitrogen-responsive upstream activation sequences of Saccharomyces cerevisiae by the product of the GLN3 gene. J. Bacteriol. 177:4190-4193.
    • (1995) J. Bacteriol. , vol.177 , pp. 4190-4193
    • Blinder, D.1    Magasanik, B.2
  • 6
    • 0018637069 scopus 로고
    • Genetics and physiology of proline utilization in Saccharomyces cerevisiae: Mutation causing constitutive enzyme expression
    • Brandriss, M. C., and B. Magasanik. 1979. Genetics and physiology of proline utilization in Saccharomyces cerevisiae: mutation causing constitutive enzyme expression. J. Bacteriol. 140:504-507.
    • (1979) J. Bacteriol. , vol.140 , pp. 504-507
    • Brandriss, M.C.1    Magasanik, B.2
  • 7
    • 3342994815 scopus 로고
    • Personal communication
    • Brent, R. 1994. Personal communication.
    • (1994)
    • Brent, R.1
  • 8
    • 0026360180 scopus 로고
    • NTR (GATAA) responsible for nitrogen catabolite repression-sensitive transcriptional activation of the allantoin pathway genes in Saccharomyces cerevisiae
    • NTR (GATAA) responsible for nitrogen catabolite repression-sensitive transcriptional activation of the allantoin pathway genes in Saccharomyces cerevisiae. J. Bacteriol. 173:4977-4982.
    • (1991) J. Bacteriol. , vol.173 , pp. 4977-4982
    • Bysani, N.1    Daugherty, J.R.2    Cooper, T.G.3
  • 9
    • 0029163085 scopus 로고
    • Structure-function analysis of the DNA binding domain of Saccharomyces cerevisiae ABF1
    • Cho, G., J. Kim, H. M. Rho, and G. Jung. 1995. Structure-function analysis of the DNA binding domain of Saccharomyces cerevisiae ABF1. Nucleic Acids Res. 23:2980-2987.
    • (1995) Nucleic Acids Res. , vol.23 , pp. 2980-2987
    • Cho, G.1    Kim, J.2    Rho, H.M.3    Jung, G.4
  • 11
    • 0028801010 scopus 로고
    • Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae
    • Coffman, J. A., R. Rai, and T. G. Cooper. 1995. Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae. J. Bacteriol. 177:6910-6918.
    • (1995) J. Bacteriol. , vol.177 , pp. 6910-6918
    • Coffman, J.A.1    Rai, R.2    Cooper, T.G.3
  • 12
    • 0030028431 scopus 로고    scopus 로고
    • Gat1p, a GATA family protein whose production is nitrogen catabolite repression sensitive, participates in transcriptional activation of nitrogencatabolic genes in Saccharomyces cerevisiae
    • Coffman, J. A., R. Rai, T. S. Cunningham, V. Svetlov, and T. G. Cooper. 1996. Gat1p, a GATA family protein whose production is nitrogen catabolite repression sensitive, participates in transcriptional activation of nitrogencatabolic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:847-858.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 847-858
    • Coffman, J.A.1    Rai, R.2    Cunningham, T.S.3    Svetlov, V.4    Cooper, T.G.5
  • 13
    • 0001840999 scopus 로고
    • Nitrogen metabolism in Saccharomyces cerevisiae
    • J. N. Strathern, E. W. Jones, and J. Broach (ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
    • Cooper, T. G. 1982. Nitrogen metabolism in Saccharomyces cerevisiae, p. 39-99. In J. N. Strathern, E. W. Jones, and J. Broach (ed.), The molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
    • (1982) The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression , pp. 39-99
    • Cooper, T.G.1
  • 14
    • 0002190417 scopus 로고
    • Allantion degradative system - An integrated transcriptional response to multiple signals
    • G. Marzluf and R. Bambrl (ed.)
    • Cooper, T. G. 1994. Allantion degradative system - an integrated transcriptional response to multiple signals, p. 139-169. In G. Marzluf and R. Bambrl (ed.), Mycota.
    • (1994) Mycota , pp. 139-169
    • Cooper, T.G.1
  • 15
    • 0025058543 scopus 로고
    • The GLN3 gene product is required for transcriptional activation of allantoin system gene expression in Saccharomyces cerevisiae
    • Cooper, T. G., D. Ferguson, R. Rai, and N. Bysani. 1990. The GLN3 gene product is required for transcriptional activation of allantoin system gene expression in Saccharomyces cerevisiae. J. Bacteriol. 172:1014-1018.
    • (1990) J. Bacteriol. , vol.172 , pp. 1014-1018
    • Cooper, T.G.1    Ferguson, D.2    Rai, R.3    Bysani, N.4
  • 16
    • 0024337290 scopus 로고
    • Requirement of upstream activation sequences for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae
    • Cooper, T. G., R. Rai, and H. S. Yoo. 1989. Requirement of upstream activation sequences for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:5440-5444.
    • (1989) Mol. Cell. Biol. , vol.9 , pp. 5440-5444
    • Cooper, T.G.1    Rai, R.2    Yoo, H.S.3
  • 17
    • 0020803459 scopus 로고
    • What is the function of nitrogen catabolite repression in Saccharomyces cerevisiae?
    • Cooper, T. G., and R. A. Sumrada. 1983. What is the function of nitrogen catabolite repression in Saccharomyces cerevisiae? J. Bacteriol. 155:623-627.
    • (1983) J. Bacteriol. , vol.155 , pp. 623-627
    • Cooper, T.G.1    Sumrada, R.A.2
  • 18
    • 0026518932 scopus 로고
    • The UGA43 negative regulatory gene of Saccharomyces cerevisiae contains both a GATA-1 type zinc finger and a putative leucinc zipper
    • Coornaert, D., S. Vissers, B. Andre, and M. Grenson. 1992. The UGA43 negative regulatory gene of Saccharomyces cerevisiae contains both a GATA-1 type zinc finger and a putative leucinc zipper. Curr. Genet. 21:301-307.
    • (1992) Curr. Genet. , vol.21 , pp. 301-307
    • Coornaert, D.1    Vissers, S.2    Andre, B.3    Grenson, M.4
  • 19
    • 0023954446 scopus 로고
    • Regulation of nitrogen assimilation in Saccharomyces cerevisiae: Roles of the URE2 and GLN3 genes
    • Courchesne, W. E., and B. Magasanik. 1988. Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J. Bacteriol. 170:708-713.
    • (1988) J. Bacteriol. , vol.170 , pp. 708-713
    • Courchesne, W.E.1    Magasanik, B.2
  • 20
    • 0025983819 scopus 로고
    • Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression
    • Cunningham, T. S., and T. G. Cooper. 1991. Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression. Mol. Cell. Biol. 11:6205-6215.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 6205-6215
    • Cunningham, T.S.1    Cooper, T.G.2
  • 23
    • 0028169783 scopus 로고
    • NTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae
    • NTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae. J. Bacteriol. 176:4718-4725.
    • (1994) J. Bacteriol. , vol.176 , pp. 4718-4725
    • Cunningham, T.S.1    Dorrington, R.A.2    Cooper, T.G.3
  • 24
    • 0027523893 scopus 로고
    • Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae
    • Daugherty, J. R., R. Rai, H. M. El Berry, and T. G. Cooper. 1993. Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae. J. Bacteriol. 175:64-73.
    • (1993) J. Bacteriol. , vol.175 , pp. 64-73
    • Daugherty, J.R.1    Rai, R.2    El Berry, H.M.3    Cooper, T.G.4
  • 25
    • 0015876290 scopus 로고
    • Yeast mutants pleiotropically impaired in the regulation of two glutamate dehydrogenases
    • Drillien, R., M. Aigle, and F. Lacroute. 1973. Yeast mutants pleiotropically impaired in the regulation of two glutamate dehydrogenases. Biochem. Biophys. Res. Commun. 53:367-372.
    • (1973) Biochem. Biophys. Res. Commun. , vol.53 , pp. 367-372
    • Drillien, R.1    Aigle, M.2    Lacroute, F.3
  • 26
    • 0015260033 scopus 로고
    • Ureidosuccinic acid uptake in yeast and some aspects of its regulation
    • Drillien, R., and F. Lacroute. 1972. Ureidosuccinic acid uptake in yeast and some aspects of its regulation. J. Bacteriol. 109:203-208.
    • (1972) J. Bacteriol. , vol.109 , pp. 203-208
    • Drillien, R.1    Lacroute, F.2
  • 27
    • 0029092610 scopus 로고
    • Correlation of two-hybrid affinity data with in vitro measurements
    • Estojak, J., R. Brent, and E. A. Golemis. 1995. Correlation of two-hybrid affinity data with in vitro measurements. Mol. Cell. Biol. 15:5820-5829.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 5820-5829
    • Estojak, J.1    Brent, R.2    Golemis, E.A.3
  • 29
    • 0025138729 scopus 로고
    • NIT2, the major nitrogen regulatory gene of Neurospora crassa, encodes a protein with a putative zinc finger DNA-binding domain
    • Fu, Y. H., and G. A. Marzluf. 1990. NIT2, the major nitrogen regulatory gene of Neurospora crassa, encodes a protein with a putative zinc finger DNA-binding domain. Mol. Cell. Biol. 10:1056-1065.
    • (1990) Mol. Cell. Biol. , vol.10 , pp. 1056-1065
    • Fu, Y.H.1    Marzluf, G.A.2
  • 30
    • 0027437850 scopus 로고
    • Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2
    • Gyurius, J., E. Golemis, H. Chertkov, and R. Brent. 1993. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75:791-803.
    • (1993) Cell , vol.75 , pp. 791-803
    • Gyurius, J.1    Golemis, E.2    Chertkov, H.3    Brent, R.4
  • 31
    • 0024320441 scopus 로고
    • DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9
    • Hanes, S. D., and R. Brent. 1989. DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9. Cell 57:1275-1283.
    • (1989) Cell , vol.57 , pp. 1275-1283
    • Hanes, S.D.1    Brent, R.2
  • 32
    • 0022212597 scopus 로고
    • Molecular characterization of the CAN1 locus in Saccharomyces cerevisiae. A transmembrane protein without N-terminal hydrophobic signal sequence
    • Hoffmann, W. 1985. Molecular characterization of the CAN1 locus in Saccharomyces cerevisiae. A transmembrane protein without N-terminal hydrophobic signal sequence. J. Biol. Chem. 260:11831-11837.
    • (1985) J. Biol. Chem. , vol.260 , pp. 11831-11837
    • Hoffmann, W.1
  • 33
    • 0026031446 scopus 로고
    • Epitupe tagging and protein surveillance
    • Kolodziej, P. A., and R. A. Young. 1991. Epitupe tagging and protein surveillance. Methods Enzymol. 194:508-519.
    • (1991) Methods Enzymol. , vol.194 , pp. 508-519
    • Kolodziej, P.A.1    Young, R.A.2
  • 34
    • 0025051170 scopus 로고
    • Multiple positive and negative cis-acting elements mediate induced arginase (CAR1) gene expression in Saccharomyces cerevisiae
    • Kovari, L., R. Sumrada, I. Kovari, and T. G. Cooper. 1990. Multiple positive and negative cis-acting elements mediate induced arginase (CAR1) gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:5087-5097.
    • (1990) Mol. Cell. Biol. , vol.10 , pp. 5087-5097
    • Kovari, L.1    Sumrada, R.2    Kovari, I.3    Cooper, T.G.4
  • 35
    • 0025345737 scopus 로고
    • A cis-acting element present in multiple genes serves as a repressor protein binding site for the yeast CAR1 gene
    • Luche, R. M., R. Sumrada, and T. G. Cooper. 1990. A cis-acting element present in multiple genes serves as a repressor protein binding site for the yeast CAR1 gene. Mol. Cell. Biol. 10:3884-3895.
    • (1990) Mol. Cell. Biol. , vol.10 , pp. 3884-3895
    • Luche, R.M.1    Sumrada, R.2    Cooper, T.G.3
  • 36
    • 0025932253 scopus 로고
    • Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae
    • Miller, S. M., and B. Magasanik. 1991. Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:6229-6247.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 6229-6247
    • Miller, S.M.1    Magasanik, B.2
  • 37
    • 0025999296 scopus 로고
    • Sequence and expression of GLN3, a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain
    • Minehart, P. L., and B. Magasanik. 1991. Sequence and expression of GLN3, a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain. Mol. Cell. Biol. 11:6216-6228.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 6216-6228
    • Minehart, P.L.1    Magasanik, B.2
  • 38
    • 0026577439 scopus 로고
    • Sequence of the GLN1 gene of Saccharomyces cerevisiae: Role of the upstream region in regulation of glutamine synthetase expression
    • Minehart, P. L., and B. Magasanik. 1992. Sequence of the GLN1 gene of Saccharomyces cerevisiae: role of the upstream region in regulation of glutamine synthetase expression. J. Bacteriol. 174:1828-1836.
    • (1992) J. Bacteriol. , vol.174 , pp. 1828-1836
    • Minehart, P.L.1    Magasanik, B.2
  • 39
    • 0021706678 scopus 로고
    • Regulation of glutamine-repressible gene products by the GLN3 function in Saccharomyces cerevisiae
    • Mitchell, A. P., and B. Magasanik. 1984. Regulation of glutamine-repressible gene products by the GLN3 function in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:2758-2766.
    • (1984) Mol. Cell. Biol. , vol.4 , pp. 2758-2766
    • Mitchell, A.P.1    Magasanik, B.2
  • 40
    • 0021744939 scopus 로고
    • Three regulatory systems control production of glutamine synthetase in Saccharomyces cerevisiae
    • Mitchell, A. P., and B. Magasanik. 1984. Three regulatory systems control production of glutamine synthetase in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:2767-2773,
    • (1984) Mol. Cell. Biol. , vol.4 , pp. 2767-2773
    • Mitchell, A.P.1    Magasanik, B.2
  • 42
    • 0027537294 scopus 로고
    • A small single-"finger" peptide from the erythroid transcription factor GATA-1 binds specifically to DNA as a zinc or iron complex
    • Omichinski, J. G., C. Trainor, T. Evans, A. M. Gronenborn, G. M. Clore, and G. Felsenfeld. 1993. A small single-"finger" peptide from the erythroid transcription factor GATA-1 binds specifically to DNA as a zinc or iron complex. Proc. Natl. Acad. Sci. USA 90:1676-1680.
    • (1993) Proc. Natl. Acad. Sci. USA , vol.90 , pp. 1676-1680
    • Omichinski, J.G.1    Trainor, C.2    Evans, T.3    Gronenborn, A.M.4    Clore, G.M.5    Felsenfeld, G.6
  • 43
    • 0025969255 scopus 로고
    • Dissection of the bifunctional ARGRII protein involved in the regulation of arginine anabolic and catabolic pathways
    • Qui, H., E. Dubois, and F. Messenguy. 1991. Dissection of the bifunctional ARGRII protein involved in the regulation of arginine anabolic and catabolic pathways. Mol. Cell. Biol. 11:2169-2179.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 2169-2179
    • Qui, H.1    Dubois, E.2    Messenguy, F.3
  • 44
    • 3342901530 scopus 로고
    • Unpublished observations
    • Rai, R., and T. G. Cooper. 1992. Unpublished observations.
    • (1992)
    • Rai, R.1    Cooper, T.G.2
  • 45
    • 0028986088 scopus 로고
    • NTR functioning in combination with other UAS elements underlies exceptional patterns of nitrogen regulation in Saccharomyces cerevisiae
    • NTR functioning in combination with other UAS elements underlies exceptional patterns of nitrogen regulation in Saccharomyces cerevisiae. Yeast 11:247-260.
    • (1995) Yeast , vol.11 , pp. 247-260
    • Rai, R.1    Daugherty, J.R.2    Cooper, T.G.3
  • 46
    • 0023387946 scopus 로고
    • Transcriptional regulation of the DAL5 gene in Saccharomyces cerevisiae
    • Rai, R., F. S. Genbauffe, and T. G. Cooper. 1987. Transcriptional regulation of the DAL5 gene in Saccharomyces cerevisiae. J. Bacteriol. 169:3521-3524.
    • (1987) J. Bacteriol. , vol.169 , pp. 3521-3524
    • Rai, R.1    Genbauffe, F.S.2    Cooper, T.G.3
  • 47
    • 0023674297 scopus 로고
    • Structure and transcription of the allantoate permease gene (DAL5) from Saccharomyces cerevisiae
    • Rai, R., F. S. Genbauffe, and T. G. Cooper. 1987. Structure and transcription of the allantoate permease gene (DAL5) from Saccharomyces cerevisiae. J. Bacteriol. 170:266-271.
    • (1987) J. Bacteriol. , vol.170 , pp. 266-271
    • Rai, R.1    Genbauffe, F.S.2    Cooper, T.G.3
  • 48
    • 0024615533 scopus 로고
    • Identification of sequences responsible for transcriptional activation of the allantoate permease gene in Saccharomyces cerevisiae
    • Rai, R., F. S. Genbauffe, R. A. Sumrada, and T. G. Cooper. 1989. Identification of sequences responsible for transcriptional activation of the allantoate permease gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:602-608.
    • (1989) Mol. Cell. Biol. , vol.9 , pp. 602-608
    • Rai, R.1    Genbauffe, F.S.2    Sumrada, R.A.3    Cooper, T.G.4
  • 50
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski, R. S., and P. Hitter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hitter, P.2
  • 51
    • 0028876606 scopus 로고
    • Transcriptional and posttranslational regulation of the amino acid permease of Saccharomyces cerevisiae
    • Stanbrough, M., and B. Magasanik. 1995. Transcriptional and posttranslational regulation of the amino acid permease of Saccharomyces cerevisiae. J. Bacteriol. 177:94-102.
    • (1995) J. Bacteriol. , vol.177 , pp. 94-102
    • Stanbrough, M.1    Magasanik, B.2
  • 52
    • 0028832649 scopus 로고
    • Role of the Gln3p and Nillp of Saccharomyces cerevisiae in the expression of nitrogen regulated genes
    • Stanbrough. M., D. W. Rowen, and B. Magasanik. 1995. Role of the Gln3p and Nillp of Saccharomyces cerevisiae in the expression of nitrogen regulated genes. Proc. Natl. Acad. Sci. USA 92:9450-9454.
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 9450-9454
    • Stanbrough, M.1    Rowen, D.W.2    Magasanik, B.3
  • 53
    • 0021739428 scopus 로고
    • Nucleotide sequence of the Saccharomyces cerevisiae arginase gene (CAR1) and its transcription under various physiological conditions
    • Sumrada, R. A., and T. G. Cooper. 1984. Nucleotide sequence of the Saccharomyces cerevisiae arginase gene (CAR1) and its transcription under various physiological conditions. J. Bacteriol. 160:1078-1087.
    • (1984) J. Bacteriol. , vol.160 , pp. 1078-1087
    • Sumrada, R.A.1    Cooper, T.G.2
  • 55
    • 0024672125 scopus 로고
    • Positive and negative regulatory elements control the expression of the UGA gene coding for the inducible 4-aminobutyric-acid-spccific-permease in Saccharomyces cerevisiae
    • Vissers, S., B. Andre, F. Muyldermans, and M. Grenson. 1989. Positive and negative regulatory elements control the expression of the UGA gene coding for the inducible 4-aminobutyric-acid-spccific-permease in Saccharomyces cerevisiae. Eur. J. Biochem. 181:357-361.
    • (1989) Eur. J. Biochem. , vol.181 , pp. 357-361
    • Vissers, S.1    Andre, B.2    Muyldermans, F.3    Grenson, M.4
  • 56
    • 0023504986 scopus 로고
    • Praline utilization in Saccharomyces cerevisiae: Sequence, regulation, and mitochondrial location of the PUT1 gene product
    • Wang, S, S., and M. C. Brandriss. 1987. Praline utilization in Saccharomyces cerevisiae: sequence, regulation, and mitochondrial location of the PUT1 gene product. Mol. Cell. Biol. 7:4431-4440.
    • (1987) Mol. Cell. Biol. , vol.7 , pp. 4431-4440
    • Wang, S.S.1    Brandriss, M.C.2
  • 57
    • 0022323786 scopus 로고
    • Nitrogen catabolite repression in yeasts and filamentous fungi
    • Wiame, J.-M., M. Grenson, and H. Arst. 1985. Nitrogen catabolite repression in yeasts and filamentous fungi. Adv. Microb. Physiol. 26:1-87.
    • (1985) Adv. Microb. Physiol. , vol.26 , pp. 1-87
    • Wiame, J.-M.1    Grenson, M.2    Arst, H.3
  • 58
    • 0028900075 scopus 로고
    • Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae
    • Xu, S., D. A. Falvey, and M. C. Brandriss. 1995. Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:2321-2330.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 2321-2330
    • Xu, S.1    Falvey, D.A.2    Brandriss, M.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.