메뉴 건너뛰기




Volumn 11, Issue 2, 2011, Pages 1511-1528

Probabilistic graphical models in artificial intelligence

Author keywords

Bayesian networks; Classification; Credal networks; Decision making; Factor graphs; Forensic; Gaussian networks; Genomic; Kikuchi approximations; Metaheuristics; Optimization; Probability; Uncertain reasoning

Indexed keywords

CLASSIFICATION; CREDAL NETWORKS; FACTOR GRAPHS; FORENSIC; GAUSSIAN NETWORKS; GENOMIC; KIKUCHI APPROXIMATIONS; META HEURISTICS; UNCERTAIN REASONING;

EID: 78751631256     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2008.01.003     Document Type: Conference Paper
Times cited : (70)

References (188)
  • 3
    • 0016722472 scopus 로고
    • A model of inexact reasoning in medicine
    • E.H. Shortliffe, and B.G. Buchanan A model of inexact reasoning in medicine Math. Biosci. 23 1975 351 379
    • (1975) Math. Biosci. , vol.23 , pp. 351-379
    • Shortliffe, E.H.1    Buchanan, B.G.2
  • 6
    • 0020001973 scopus 로고
    • Internist-1, an experimental computer-based diagnostic consultant for general internal medicine
    • R.A. Miller, H.E. Pople, and J.D. Myers Internist-1, an experimental computer-based diagnostic consultant for general internal medicine N. Eng. J. Med. 8 1982 468 476
    • (1982) N. Eng. J. Med. , vol.8 , pp. 468-476
    • Miller, R.A.1    Pople, H.E.2    Myers, J.D.3
  • 7
    • 0020798546 scopus 로고
    • Inferno: A cautious approach to uncertain inference
    • J.R. Quinlan Inferno: a cautious approach to uncertain inference Comput. J. 26 1983 255 269
    • (1983) Comput. J. , vol.26 , pp. 255-269
    • Quinlan, J.R.1
  • 8
    • 0022836638 scopus 로고
    • The inconsistent use of measures of certainty in artificial intelligence
    • E. Horvitz, and D. Heckerman The inconsistent use of measures of certainty in artificial intelligence L.N. Kanal, J.F. Lemmer, Uncertainty in Artificial Intelligence 1986 North-Holland 137 151
    • (1986) Uncertainty in Artificial Intelligence , pp. 137-151
    • Horvitz, E.1    Heckerman, D.2
  • 10
    • 49349133217 scopus 로고
    • Fuzzy sets as a basis for a theory of possibility
    • L.A. Zadeh Fuzzy sets as a basis for a theory of possibility Fuzzy Sets Syst. 1 1978 3 28
    • (1978) Fuzzy Sets Syst. , vol.1 , pp. 3-28
    • Zadeh, L.A.1
  • 11
    • 0001096516 scopus 로고
    • A theory of approximate reasoning
    • L.A. Zadeh A theory of approximate reasoning J.E. Hayes, D. Mikulich, Machine Intelligence, vol. 9 1979 Elsevier Amsterdam 149 194
    • (1979) Machine Intelligence, Vol. 9 , pp. 149-194
    • Zadeh, L.A.1
  • 13
    • 0000516376 scopus 로고
    • Upper and lower probabilities induced by a multivalued mapping
    • A.P. Dempster Upper and lower probabilities induced by a multivalued mapping Ann. Math. Stat. 38 1967 325 339
    • (1967) Ann. Math. Stat. , vol.38 , pp. 325-339
    • Dempster, A.P.1
  • 15
    • 0002282678 scopus 로고
    • Probability, frequency, and reasonable expectation
    • R.T. Cox Probability, frequency, and reasonable expectation Am. J. Phys. 14 1946 1 13
    • (1946) Am. J. Phys. , vol.14 , pp. 1-13
    • Cox, R.T.1
  • 16
    • 0002066122 scopus 로고
    • Scoring rules and the inevitability of probability (with discussion)
    • D.V. Lindley Scoring rules and the inevitability of probability (with discussion) Int. Stat. Rev. 50 1982 1 26
    • (1982) Int. Stat. Rev. , vol.50 , pp. 1-26
    • Lindley, D.V.1
  • 17
    • 0022844204 scopus 로고
    • Probabilistic versus fuzzy reasoning
    • P. Cheesman Probabilistic versus fuzzy reasoning L.N. Kanal, J.F. Lemmer, Uncertainty in Artificial Intelligence 1986 North-Holland 85 102
    • (1986) Uncertainty in Artificial Intelligence , pp. 85-102
    • Cheesman, P.1
  • 23
    • 0001637134 scopus 로고
    • Markov fields and log-linear interaction models for contingency tables
    • J.N. Darroch, S.L. Lauritzen, and T.P. Speed Markov fields and log-linear interaction models for contingency tables Ann. Stat. 8 1980 522 539
    • (1980) Ann. Stat. , vol.8 , pp. 522-539
    • Darroch, J.N.1    Lauritzen, S.L.2    Speed, T.P.3
  • 24
    • 0000243504 scopus 로고
    • Graphical and recursive models for contingency tables
    • N. Wermuth, and S.L. Lauritzen Graphical and recursive models for contingency tables Biometrika 70 1983 537 552
    • (1983) Biometrika , vol.70 , pp. 537-552
    • Wermuth, N.1    Lauritzen, S.L.2
  • 25
    • 0002384709 scopus 로고
    • Conditional independence in statistical theory (with discussion)
    • A.P. Dawid Conditional independence in statistical theory (with discussion) J. R. Stat. Soc. B 41 1979 1 31
    • (1979) J. R. Stat. Soc. B , vol.41 , pp. 1-31
    • Dawid, A.P.1
  • 28
    • 77956264898 scopus 로고    scopus 로고
    • Bayesian networks: A model of self-activated memory for evidential reasoning
    • R-43, UCLA Computer Science Department, June 1985
    • J. Pearl, Bayesian networks: a model of self-activated memory for evidential reasoning, Technical Report CSD-850021, R-43, UCLA Computer Science Department, June 1985.
    • Technical Report CSD-850021
    • Pearl, J.1
  • 29
    • 0031141157 scopus 로고    scopus 로고
    • The normative representation of quantified beliefs by belief functions
    • Ph. Smets The normative representation of quantified beliefs by belief functions Artif. Intell. 92 1998 229 242
    • (1998) Artif. Intell. , vol.92 , pp. 229-242
    • Smets, Ph.1
  • 30
    • 49149147322 scopus 로고
    • A logic for default reasoning
    • R. Reiter A logic for default reasoning Artif. Intell. 13 1980 81 132
    • (1980) Artif. Intell. , vol.13 , pp. 81-132
    • Reiter, R.1
  • 31
    • 0018544688 scopus 로고
    • A truth maintenance system
    • J. Doyle A truth maintenance system Artif. Intell. 12 1979 231 272
    • (1979) Artif. Intell. , vol.12 , pp. 231-272
    • Doyle, J.1
  • 32
    • 0001006209 scopus 로고
    • Local computation with probabilities on graphical structures and their application to expert systems
    • S.L. Lauritzen, and D.J. Spiegelhalter Local computation with probabilities on graphical structures and their application to expert systems J. R. Stat. Soc. B 50 1988 157 224
    • (1988) J. R. Stat. Soc. B , vol.50 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 33
    • 0010070089 scopus 로고
    • Working Paper N. 201, School of Business, University of Kansas, Lawrence
    • G. Shafer, P.P. Shenoy, Local computation in hypertrees, Working Paper N. 201, School of Business, University of Kansas, Lawrence, 1988.
    • (1988) Local Computation in Hypertrees
    • Shafer, G.1    Shenoy, P.P.2
  • 34
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • G.F. Cooper The computational complexity of probabilistic inference using Bayesian belief networks Artif. Intell. 42 1990 393 405
    • (1990) Artif. Intell. , vol.42 , pp. 393-405
    • Cooper, G.F.1
  • 35
    • 77955311604 scopus 로고    scopus 로고
    • Algorithms for approximate probability propagation in Bayesian networks
    • A. Cano, S. Moral, and A. Salmerón Algorithms for approximate probability propagation in Bayesian networks J.A. Gámez, S. Moral, A. Salmerón, Advances in Bayesian Networks 2004 Springer-Verlag Berlin 77 97
    • (2004) Advances in Bayesian Networks , pp. 77-97
    • Cano, A.1    Moral, S.2    Salmerón, A.3
  • 37
    • 0022818911 scopus 로고
    • Evaluating influence diagrams
    • R.D. Shachter Evaluating influence diagrams Oper. Res. 34 6 1986 871 882
    • (1986) Oper. Res. , vol.34 , Issue.6 , pp. 871-882
    • Shachter, R.D.1
  • 39
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. Chow, and C. Liu Approximating discrete probability distributions with dependence trees IEEE Trans. Inform. Theory 14 1968 462 467
    • (1968) IEEE Trans. Inform. Theory , vol.14 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 42
    • 0012062308 scopus 로고
    • Kutato: An entropy-driven system for the construction of probabilistic expert systems from databases
    • E.A. Herskovits, and G.F. Cooper Kutato: an entropy-driven system for the construction of probabilistic expert systems from databases P.P. Bonissone, M. Henrion, L.N. Kanal, J.F. Lemmer, Uncertainty in Artificial Intelligence, vol. 6 1991 North-Holland 117 125
    • (1991) Uncertainty in Artificial Intelligence, Vol. 6 , pp. 117-125
    • Herskovits, E.A.1    Cooper, G.F.2
  • 43
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G.F. Cooper, and E.A. Herskovits A Bayesian method for the induction of probabilistic networks from data Mach. Learn. 9 1992 309 347
    • (1992) Mach. Learn. , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.A.2
  • 45
    • 0002480085 scopus 로고
    • Graphical models for associations between variables, some of which are qualitative and some quantitative
    • S.L. Lauritzen, and N. Wermuth Graphical models for associations between variables, some of which are qualitative and some quantitative Ann. Stat. 17 1989 31 57
    • (1989) Ann. Stat. , vol.17 , pp. 31-57
    • Lauritzen, S.L.1    Wermuth, N.2
  • 46
    • 84950442428 scopus 로고
    • Propagation of probabilities, means and variances in mixed graphical association models
    • S.L. Lauritzen Propagation of probabilities, means and variances in mixed graphical association models J. Am. Stat. Assoc. 87 1992 1098 1108
    • (1992) J. Am. Stat. Assoc. , vol.87 , pp. 1098-1108
    • Lauritzen, S.L.1
  • 47
    • 0041377763 scopus 로고    scopus 로고
    • Stable local computation with conditional Gaussian distributions
    • S.L. Lauritzen, and F.V. Jensen Stable local computation with conditional Gaussian distributions Stat. Comput. 11 2001 191 203
    • (2001) Stat. Comput. , vol.11 , pp. 191-203
    • Lauritzen, S.L.1    Jensen, F.V.2
  • 48
    • 0003846045 scopus 로고    scopus 로고
    • Learning Bayesian networks
    • Microsoft Research, Redmond, WA, December 1994. URL
    • D. Heckerman, D. Geiger, Learning Bayesian networks, Technical Report MSR-TR-95-02, Microsoft Research, Redmond, WA, December 1994. URL http://citeseer.ist.psu.edu/article/heckerman95learning.html.
    • Technical Report MSR-TR-95-02
    • Heckerman, D.1    Geiger, D.2
  • 50
    • 0042192817 scopus 로고
    • Hugin - A shell for building Bayesian belief universes for expert systems
    • G. Shafer, J. Pearl (Eds.) Morgan Kaufmann
    • S.K. Andersen, K.G. Olesen, F.V. Jensen, F. Jensen, Hugin - a shell for building Bayesian belief universes for expert systems, in: G. Shafer, J. Pearl (Eds.), Readings in Uncertain Reasoning, Morgan Kaufmann, 1990, pp. 332-337.
    • (1990) Readings in Uncertain Reasoning , pp. 332-337
    • Andersen, S.K.1    Olesen, K.G.2    Jensen, F.V.3    Jensen, F.4
  • 53
    • 84990553353 scopus 로고
    • A model for reasoning about persistence and causation
    • T. Dean, and K. Kanazawa A model for reasoning about persistence and causation Comput. Intell. 5 1989 142 150
    • (1989) Comput. Intell. , vol.5 , pp. 142-150
    • Dean, T.1    Kanazawa, K.2
  • 58
    • 21244437975 scopus 로고    scopus 로고
    • Editorial of the special issue on probabilistic graphical models in classification
    • P. Larrañaga, J.A. Lozano, J.M. Peña, and I. Inza Editorial of the special issue on probabilistic graphical models in classification Mach. Learn. 59 2005 211 212
    • (2005) Mach. Learn. , vol.59 , pp. 211-212
    • Larrañaga, P.1    Lozano, J.A.2    Peña, J.M.3    Inza, I.4
  • 60
    • 84937350040 scopus 로고
    • Steps toward artificial intelligence
    • M. Minsky Steps toward artificial intelligence Trans. Inst. Radio Eng. 49 1961 8 30
    • (1961) Trans. Inst. Radio Eng. , vol.49 , pp. 8-30
    • Minsky, M.1
  • 61
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos, and M.J. Pazzani On the optimality of the simple Bayesian classifier under zero-one loss Mach. Learn. 29 2-3 1997 103 130
    • (1997) Mach. Learn. , vol.29 , Issue.23 , pp. 103-130
    • Domingos, P.1    Pazzani, M.J.2
  • 62
    • 0035528674 scopus 로고    scopus 로고
    • Idiot's Bayes - Not so stupid after all?
    • D.J. Hand, and K. You Idiot's Bayes - not so stupid after all? Int. Stat. Rev. 69 2001 385 398
    • (2001) Int. Stat. Rev. , vol.69 , pp. 385-398
    • Hand, D.J.1    You, K.2
  • 64
  • 73
    • 0042830813 scopus 로고    scopus 로고
    • Floating search algorithms for structure learning of Bayesian network classifiers
    • F. Pernkopf, and P. O'Leary Floating search algorithms for structure learning of Bayesian network classifiers Pattern Recogn. Lett. 24 15 2003 2839 2848
    • (2003) Pattern Recogn. Lett. , vol.24 , Issue.15 , pp. 2839-2848
    • Pernkopf, F.1    O'Leary, P.2
  • 74
    • 4744353182 scopus 로고    scopus 로고
    • Restricted Bayesian network structure learning
    • Springer-Verlag
    • P.J.F. Lucas Restricted Bayesian network structure learning Advances in Bayesian Networks 2004 Springer-Verlag 217 234
    • (2004) Advances in Bayesian Networks , pp. 217-234
    • Lucas, P.J.F.1
  • 80
    • 0344447109 scopus 로고    scopus 로고
    • Predicting the survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches
    • B. Sierra, and P. Larrañaga Predicting the survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches Artif. Intell. Med. 14 1-2 1998 215 230
    • (1998) Artif. Intell. Med. , vol.14 , Issue.12 , pp. 215-230
    • Sierra, B.1    Larrañaga, P.2
  • 81
    • 21244444642 scopus 로고    scopus 로고
    • Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
    • R. Greiner, W. Zhou, X. Su, and B. Shen Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers Mach. Learn. 2005 59
    • (2005) Mach. Learn. , pp. 59
    • Greiner, R.1    Zhou, W.2    Su, X.3    Shen, B.4
  • 85
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications
    • E. Forgy Cluster analysis of multivariate data: efficiency vs. interpretability of classifications Biometrics 21 1965 768 769
    • (1965) Biometrics , vol.21 , pp. 768-769
    • Forgy, E.1
  • 87
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A.P. Dempster, N.M. Laird, and D.B. Rubin Maximum likelihood from incomplete data via the EM algorithm J. R. Stat. Soc. B 39 1 1977 1 38
    • (1977) J. R. Stat. Soc. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 91
    • 0031272327 scopus 로고    scopus 로고
    • Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables
    • D.M. Chickering, and D. Heckerman Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables Mach. Learn. 29 1997 181 212
    • (1997) Mach. Learn. , vol.29 , pp. 181-212
    • Chickering, D.M.1    Heckerman, D.2
  • 92
    • 58149210716 scopus 로고
    • The em algorithm for graphical association models with missing data
    • S.L. Lauritzen The EM algorithm for graphical association models with missing data Comput. Stat. Data Anal. 19 1995 191 201
    • (1995) Comput. Stat. Data Anal. , vol.19 , pp. 191-201
    • Lauritzen, S.L.1
  • 94
    • 84898959728 scopus 로고    scopus 로고
    • Estimating dependency structure as a hidden variable
    • M. Meil, and M.I. Jordan Estimating dependency structure as a hidden variable Neural Inform. Process. Syst. 1998 584 590
    • (1998) Neural Inform. Process. Syst. , pp. 584-590
    • Meil, M.1    Jordan, M.I.2
  • 95
    • 17144463341 scopus 로고    scopus 로고
    • Learning Bayesian networks for clustering by means of constructive induction
    • J.M. Peña, J.A. Lozano, and P. Larrañaga Learning Bayesian networks for clustering by means of constructive induction Pattern Recogn. Lett. 20 11-13 1999 1219 1230
    • (1999) Pattern Recogn. Lett. , vol.20 , Issue.1113 , pp. 1219-1230
    • Peña, J.M.1    Lozano, J.A.2    Larrañaga, P.3
  • 96
    • 0033685826 scopus 로고    scopus 로고
    • An improved Bayesian structural em algorithm for learning Bayesian networks for clustering
    • J.M. Peña, J.A. Lozano, and P. Larrañaga An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering Pattern Recogn. Lett. 21 8 2000 779 786
    • (2000) Pattern Recogn. Lett. , vol.21 , Issue.8 , pp. 779-786
    • Peña, J.M.1    Lozano, J.A.2    Larrañaga, P.3
  • 97
    • 0036532762 scopus 로고    scopus 로고
    • Learning recursive Bayesian multinets for data clustering by means of constructive induction
    • J.M. Peña, J.A. Lozano, and P. Larrañaga Learning recursive Bayesian multinets for data clustering by means of constructive induction Mach. Learn. 47 2002 63 89
    • (2002) Mach. Learn. , vol.47 , pp. 63-89
    • Peña, J.M.1    Lozano, J.A.2    Larrañaga, P.3
  • 99
    • 26944460634 scopus 로고    scopus 로고
    • Abductive inference in Bayesian networks: A review
    • J.A. Gámez Abductive inference in Bayesian networks: a review J.A. Gámez, S. Moral, A. Salmerón, Advances in Bayesian Networks 2004 Springer-Verlag 101 120
    • (2004) Advances in Bayesian Networks , pp. 101-120
    • Gámez, J.A.1
  • 100
    • 0028483915 scopus 로고
    • Finding MAPs for belief networks is NP-hard
    • S.E. Shimony Finding MAPs for belief networks is NP-hard Artif. Intell. 68 1994 399 410
    • (1994) Artif. Intell. , vol.68 , pp. 399-410
    • Shimony, S.E.1
  • 101
    • 0003064380 scopus 로고
    • Applications of a general propagation algorithm for probabilistic expert systems
    • A.P. Dawid Applications of a general propagation algorithm for probabilistic expert systems Stat. Comput. 2 1992 25 36
    • (1992) Stat. Comput. , vol.2 , pp. 25-36
    • Dawid, A.P.1
  • 102
    • 0006776658 scopus 로고    scopus 로고
    • An efficient algorithm for finding the M most probable configurations in probabilistic expert systems
    • D. Nilsson An efficient algorithm for finding the M most probable configurations in probabilistic expert systems Stat. Comput. 8 1998 159 173
    • (1998) Stat. Comput. , vol.8 , pp. 159-173
    • Nilsson, D.1
  • 104
    • 26944434018 scopus 로고    scopus 로고
    • Complexity results and approximation strategies for MAP explanations
    • J.D. Park, and A. Darwiche Complexity results and approximation strategies for MAP explanations J. Artif. Intell. Res. 21 2004 101 133
    • (2004) J. Artif. Intell. Res. , vol.21 , pp. 101-133
    • Park, J.D.1    Darwiche, A.2
  • 105
    • 26944484635 scopus 로고    scopus 로고
    • On the problem of performing exact partial abductive inference in Bayesian belief networks using junction trees
    • L.M. de Campos, J.A. Gámez, and S. Moral On the problem of performing exact partial abductive inference in Bayesian belief networks using junction trees B. Bouchon-Meunier, Technologies for Constructing Intelligent Systems 2: Tools 2002 Springer-Verlag 289 302
    • (2002) Technologies for Constructing Intelligent Systems 2: Tools , pp. 289-302
    • De Campos, L.M.1    Gámez, J.A.2    Moral, S.3
  • 107
    • 0034302667 scopus 로고    scopus 로고
    • Importance sampling in Bayesian networks using probability trees
    • A. Salmerón, A. Cano, and S. Moral Importance sampling in Bayesian networks using probability trees Comput. Stat. Data Anal. 34 2000 387 413
    • (2000) Comput. Stat. Data Anal. , vol.34 , pp. 387-413
    • Salmerón, A.1    Cano, A.2    Moral, S.3
  • 108
    • 26944464792 scopus 로고    scopus 로고
    • Partial abductive inference in Bayesian networks by using probability trees
    • L.M. de Campos, J.A. Gámez, and S. Moral Partial abductive inference in Bayesian networks by using probability trees O. Camp, Enterprise Information Systems V 2004 Kluwer Academic Publishers 146 154
    • (2004) Enterprise Information Systems v , pp. 146-154
    • De Campos, L.M.1    Gámez, J.A.2    Moral, S.3
  • 109
    • 85012612291 scopus 로고
    • A comparison of decision analysis and expert rules for sequential analysis
    • North-Holland New York
    • J. Kalagnanam, and M. Henrion A comparison of decision analysis and expert rules for sequential analysis Uncertainty in Artificial Intelligence, vol. 4 1990 North-Holland New York pp. 271-281
    • (1990) Uncertainty in Artificial Intelligence, Vol. 4
    • Kalagnanam, J.1    Henrion, M.2
  • 117
    • 1842732640 scopus 로고    scopus 로고
    • Multi-stage Monte Carlo method for solving influence diagrams using local computation
    • J. Charnes, and P.P. Shenoy Multi-stage Monte Carlo method for solving influence diagrams using local computation Manage. Sci. 50 2004 405 418
    • (2004) Manage. Sci. , vol.50 , pp. 405-418
    • Charnes, J.1    Shenoy, P.P.2
  • 118
    • 33645979713 scopus 로고    scopus 로고
    • A forward-backward Monte Carlo method for solving influence diagrams
    • A. Cano, M. Gómez-Olmedo, and S. Moral A forward-backward Monte Carlo method for solving influence diagrams Int. J. Approx. Reason. 42 2006 119 135
    • (2006) Int. J. Approx. Reason. , vol.42 , pp. 119-135
    • Cano, A.1    Gómez-Olmedo, M.2    Moral, S.3
  • 120
    • 0033361457 scopus 로고    scopus 로고
    • A comparison of graphical techniques for asymmetric decision problems
    • C. Bielza, and P.P. Shenoy A comparison of graphical techniques for asymmetric decision problems Manage. Sci. 45 1999 1552 1569
    • (1999) Manage. Sci. , vol.45 , pp. 1552-1569
    • Bielza, C.1    Shenoy, P.P.2
  • 125
    • 0141503453 scopus 로고    scopus 로고
    • Multi-agent influence diagrams for representing and solving games
    • D. Koller, and B. Milch Multi-agent influence diagrams for representing and solving games Games Econ. Behav. 45 1 2003 181 221 (full version of paper in IJCAI '03)
    • (2003) Games Econ. Behav. , vol.45 , Issue.1 , pp. 181-221
    • Koller, D.1    Milch, B.2
  • 129
    • 84958959530 scopus 로고    scopus 로고
    • From recombination of genes to the estimation of distributions I. Binary parameters
    • H. Mühlenbein, and G. Paaß From recombination of genes to the estimation of distributions I. Binary parameters H.-M. Voigt, W. Ebeling, I. Rechenberg, H.-P. Schwefel, Parallel Problem Solving from Nature - PPSN IV 1996 Springer-Verlag Berlin 178 187 LNCS 1141
    • (1996) Parallel Problem Solving from Nature - PPSN IV , pp. 178-187
    • Mühlenbein, H.1    Paaß, G.2
  • 131
    • 0003984832 scopus 로고
    • Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning
    • Carnegie Mellon University, Pittsburgh, PA
    • S. Baluja, Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning, Technical Report CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA, 1994.
    • (1994) Technical Report CMU-CS-94-163
    • Baluja, S.1
  • 133
    • 0345504778 scopus 로고    scopus 로고
    • Schemata, distributions and graphical models in evolutionary optimization
    • H. Mühlenbein, T. Mahnig, and A. Ochoa Schemata, distributions and graphical models in evolutionary optimization J. Heuristics 5 2 1999 213 247
    • (1999) J. Heuristics , vol.5 , Issue.2 , pp. 213-247
    • Mühlenbein, H.1    Mahnig, T.2    Ochoa, A.3
  • 135
    • 0003738581 scopus 로고    scopus 로고
    • Linkage learning via probabilistic modeling in the EcGA
    • University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL
    • G. Harik, Linkage learning via probabilistic modeling in the EcGA, IlliGAL Report 99010, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, 1999.
    • (1999) IlliGAL Report 99010
    • Harik, G.1
  • 136
    • 0036856506 scopus 로고    scopus 로고
    • Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms
    • P.A. Bosman, and D. Thierens Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms Int. J. Approx. Reason. 31 3 2002 259 289
    • (2002) Int. J. Approx. Reason. , vol.31 , Issue.3 , pp. 259-289
    • Bosman, P.A.1    Thierens, D.2
  • 145
    • 0039632408 scopus 로고
    • Influence diagrams, Bayesian imperialism, and the Collins case: An appeal to reason
    • W. Edwards Influence diagrams, Bayesian imperialism, and the Collins case: an appeal to reason Cardozo Law Rev. 13 1991 1025 1074
    • (1991) Cardozo Law Rev. , vol.13 , pp. 1025-1074
    • Edwards, W.1
  • 147
    • 33748801604 scopus 로고    scopus 로고
    • Computational inference for evidential reasoning in support of judicial proof
    • T.S. Lewit, and B.K. Laskey Computational inference for evidential reasoning in support of judicial proof Cardozo Law Rev. 22 2001 1691 1731
    • (2001) Cardozo Law Rev. , vol.22 , pp. 1691-1731
    • Lewit, T.S.1    Laskey, B.K.2
  • 148
    • 0037407256 scopus 로고    scopus 로고
    • Why wasnt O.J. convicted? emotional coherence and legal inference
    • P. Thagart Why wasnt O.J. convicted? emotional coherence and legal inference Cogn. Emotion 17 2003 361 383
    • (2003) Cogn. Emotion , vol.17 , pp. 361-383
    • Thagart, P.1
  • 149
    • 0036899314 scopus 로고    scopus 로고
    • Probabilistic expert systems for forensic inference from genetic markers
    • A.P. Dawid, J. Mortera, V.L. Pascali, and D. van Boxel Probabilistic expert systems for forensic inference from genetic markers Scand. J. Stat. 29 2002 577 595
    • (2002) Scand. J. Stat. , vol.29 , pp. 577-595
    • Dawid, A.P.1    Mortera, J.2    Pascali, V.L.3    Van Boxel, D.4
  • 150
    • 0043135062 scopus 로고    scopus 로고
    • Probabilistic expert systems for DNA mixture profiling
    • J. Mortera, A.P. Dawid, and S.L. Lauritzen Probabilistic expert systems for DNA mixture profiling Theor. Popul. Biol. 63 2003 191 205
    • (2003) Theor. Popul. Biol. , vol.63 , pp. 191-205
    • Mortera, J.1    Dawid, A.P.2    Lauritzen, S.L.3
  • 151
  • 153
    • 0037227664 scopus 로고    scopus 로고
    • How the probability of a false positive affects the value of DNA evidence
    • W.C. Thompson, F. Taroni, and C.G.G. Aitken How the probability of a false positive affects the value of DNA evidence J. Forensic Sci. 48 2003 1357 1360
    • (2003) J. Forensic Sci. , vol.48 , pp. 1357-1360
    • Thompson, W.C.1    Taroni, F.2    Aitken, C.G.G.3
  • 156
    • 0036358442 scopus 로고    scopus 로고
    • Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational microarray data
    • C. Yoo, V. Thorsson, and G.F. Cooper Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational microarray data Proceedings of the Pac. Symp. Biocomput. 2002 498 509
    • (2002) Proceedings of the Pac. Symp. Biocomput. , pp. 498-509
    • Yoo, C.1    Thorsson, V.2    Cooper, G.F.3
  • 157
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • N. Friedman Inferring cellular networks using probabilistic graphical models Science 303 2004 799 805
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 161
    • 16844366938 scopus 로고    scopus 로고
    • Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia
    • P. Sebastiani, M.F. Ramoni, V. Nolan, C.T. Baldwin, and M.H. Steinberg Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia Nat. Genet. 37 2005 435 440
    • (2005) Nat. Genet. , vol.37 , pp. 435-440
    • Sebastiani, P.1    Ramoni, M.F.2    Nolan, V.3    Baldwin, C.T.4    Steinberg, M.H.5
  • 163
    • 8344276113 scopus 로고    scopus 로고
    • Elvira Consortium, Elvira: An environment for probabilistic graphical models
    • Elvira Consortium, Elvira: an environment for probabilistic graphical models, in: J.A. Gámez, A. Salmerón (Eds.) First European Workshop in Probabilistic Graphical Models, 2002, pp. 222-230.
    • (2002) First European Workshop in Probabilistic Graphical Models , pp. 222-230
    • Gámez, J.A.1
  • 164
    • 84949434688 scopus 로고    scopus 로고
    • Learning Bayesian belief networks classifiers: Algorithms and systems
    • Springer
    • J. Cheng, R. Greiner, Learning Bayesian belief networks classifiers: algorithms and systems. Lectures Notes in Computer Science, Springer, 2001, pp. 141-151.
    • (2001) Lectures Notes in Computer Science , pp. 141-151
    • Cheng, J.1    Greiner, R.2
  • 165
    • 0003229133 scopus 로고    scopus 로고
    • The Bayes net toolbox for Matlab
    • K. Murphy The Bayes net toolbox for Matlab Comput. Sci. Stat. 33 2001 331 350
    • (2001) Comput. Sci. Stat. , vol.33 , pp. 331-350
    • Murphy, K.1
  • 166
    • 0003470083 scopus 로고    scopus 로고
    • Bugs: Bayesian inference using Gibbs sampling
    • MRC Biostatistics Unit, Cambridge
    • D.J. Spiedelhalter, A. Thomas, N.G. Best, W. Gilks, Bugs: Bayesian inference using Gibbs sampling, Technical Report, MRC Biostatistics Unit, Cambridge, 1996.
    • (1996) Technical Report
    • Spiedelhalter, D.J.1    Thomas, A.2    Best, N.G.3    Gilks, W.4
  • 167
    • 28844487309 scopus 로고    scopus 로고
    • Graphical models in R
    • S.L. Lauritzen Graphical models in R R. News 3 2 2002 39
    • (2002) R. News , vol.3 , Issue.2 , pp. 39
    • Lauritzen, S.L.1
  • 168
    • 2342558377 scopus 로고    scopus 로고
    • The Javabayes system
    • F.G. Cozman The Javabayes system ISBA Bull. 7 4 2001 16 21
    • (2001) ISBA Bull. , vol.7 , Issue.4 , pp. 16-21
    • Cozman, F.G.1
  • 170
    • 78751638055 scopus 로고    scopus 로고
    • URL address
    • BayesiaLab, Bayesia Home Page. URL address http://www.bayesia.com/.
  • 171
    • 78751611171 scopus 로고    scopus 로고
    • Home Page. URL address
    • Netica, Norsys Software Corp. Home Page. URL address http://www.norsys. com/netica.html.
  • 172
    • 0038016626 scopus 로고    scopus 로고
    • Finex: A probabilistic expert system for forensic identification
    • R.G. Cowell Finex: a probabilistic expert system for forensic identification Forensic Sci. Int. 134 2003 196 206
    • (2003) Forensic Sci. Int. , vol.134 , pp. 196-206
    • Cowell, R.G.1
  • 177
    • 36149021742 scopus 로고
    • A theory of cooperative phenomena
    • R. Kikuchi A theory of cooperative phenomena Phys. Rev. 81 6 1951 988 1003
    • (1951) Phys. Rev. , vol.81 , Issue.6 , pp. 988-1003
    • Kikuchi, R.1
  • 178
    • 15544373328 scopus 로고    scopus 로고
    • Estimation of distribution algorithms with kikuchi approximations
    • DOI 10.1162/1063656053583496
    • R. Santana Estimation of distribution algorithms with Kikuchi approximations Evol. Comput. 13 1 2005 67 97 (Pubitemid 40402991)
    • (2005) Evolutionary Computation , vol.13 , Issue.1 , pp. 67-97
    • Santana, R.1
  • 179
    • 0010358630 scopus 로고    scopus 로고
    • Credal networks
    • F.G. Cozman Credal networks Artif. Intell. 120 2000 199 233
    • (2000) Artif. Intell. , vol.120 , pp. 199-233
    • Cozman, F.G.1
  • 180
    • 0006451644 scopus 로고
    • Interval influence diagrams
    • K.W. Fertig, and J.S. Breese Interval influence diagrams M. Henrion, R.D. Shachter, L.N. Kanal, J.F. Lemmer, Uncertainty in Artificial Intelligence, vol. 5 1990 North-Holland Amsterdam 149 161
    • (1990) Uncertainty in Artificial Intelligence , vol.5 , pp. 149-161
    • Fertig, K.W.1    Breese, J.S.2
  • 181
    • 0039134297 scopus 로고
    • On probability intervals
    • J. Pearl On probability intervals Int. J. Approx. Reason. 2 1988 211 216
    • (1988) Int. J. Approx. Reason. , vol.2 , pp. 211-216
    • Pearl, J.1
  • 184
    • 0141586405 scopus 로고    scopus 로고
    • A survey of concepts of independence for imprecise probabilities
    • I. Couso, S. Moral, and P. Walley A survey of concepts of independence for imprecise probabilities Risk Decis. Policy 5 2000 165 181
    • (2000) Risk Decis. Policy , vol.5 , pp. 165-181
    • Couso, I.1    Moral, S.2    Walley, P.3
  • 186
    • 84883246548 scopus 로고    scopus 로고
    • Inferences from multinomial data: Learning about a bag of marbles (with discussion)
    • P. Walley Inferences from multinomial data: learning about a bag of marbles (with discussion) J. R. Stat. Soc. B 58 1996 3 57
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 3-57
    • Walley, P.1
  • 188
    • 0037097254 scopus 로고    scopus 로고
    • The naive credal classifier
    • M. Zaffalon The naive credal classifier J. Stat. Plan. Infer. 105 2002 5 21
    • (2002) J. Stat. Plan. Infer. , vol.105 , pp. 5-21
    • Zaffalon, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.