-
3
-
-
0016722472
-
A model of inexact reasoning in medicine
-
E.H. Shortliffe, and B.G. Buchanan A model of inexact reasoning in medicine Math. Biosci. 23 1975 351 379
-
(1975)
Math. Biosci.
, vol.23
, pp. 351-379
-
-
Shortliffe, E.H.1
Buchanan, B.G.2
-
6
-
-
0020001973
-
Internist-1, an experimental computer-based diagnostic consultant for general internal medicine
-
R.A. Miller, H.E. Pople, and J.D. Myers Internist-1, an experimental computer-based diagnostic consultant for general internal medicine N. Eng. J. Med. 8 1982 468 476
-
(1982)
N. Eng. J. Med.
, vol.8
, pp. 468-476
-
-
Miller, R.A.1
Pople, H.E.2
Myers, J.D.3
-
7
-
-
0020798546
-
Inferno: A cautious approach to uncertain inference
-
J.R. Quinlan Inferno: a cautious approach to uncertain inference Comput. J. 26 1983 255 269
-
(1983)
Comput. J.
, vol.26
, pp. 255-269
-
-
Quinlan, J.R.1
-
8
-
-
0022836638
-
The inconsistent use of measures of certainty in artificial intelligence
-
E. Horvitz, and D. Heckerman The inconsistent use of measures of certainty in artificial intelligence L.N. Kanal, J.F. Lemmer, Uncertainty in Artificial Intelligence 1986 North-Holland 137 151
-
(1986)
Uncertainty in Artificial Intelligence
, pp. 137-151
-
-
Horvitz, E.1
Heckerman, D.2
-
10
-
-
49349133217
-
Fuzzy sets as a basis for a theory of possibility
-
L.A. Zadeh Fuzzy sets as a basis for a theory of possibility Fuzzy Sets Syst. 1 1978 3 28
-
(1978)
Fuzzy Sets Syst.
, vol.1
, pp. 3-28
-
-
Zadeh, L.A.1
-
11
-
-
0001096516
-
A theory of approximate reasoning
-
L.A. Zadeh A theory of approximate reasoning J.E. Hayes, D. Mikulich, Machine Intelligence, vol. 9 1979 Elsevier Amsterdam 149 194
-
(1979)
Machine Intelligence, Vol. 9
, pp. 149-194
-
-
Zadeh, L.A.1
-
13
-
-
0000516376
-
Upper and lower probabilities induced by a multivalued mapping
-
A.P. Dempster Upper and lower probabilities induced by a multivalued mapping Ann. Math. Stat. 38 1967 325 339
-
(1967)
Ann. Math. Stat.
, vol.38
, pp. 325-339
-
-
Dempster, A.P.1
-
15
-
-
0002282678
-
Probability, frequency, and reasonable expectation
-
R.T. Cox Probability, frequency, and reasonable expectation Am. J. Phys. 14 1946 1 13
-
(1946)
Am. J. Phys.
, vol.14
, pp. 1-13
-
-
Cox, R.T.1
-
16
-
-
0002066122
-
Scoring rules and the inevitability of probability (with discussion)
-
D.V. Lindley Scoring rules and the inevitability of probability (with discussion) Int. Stat. Rev. 50 1982 1 26
-
(1982)
Int. Stat. Rev.
, vol.50
, pp. 1-26
-
-
Lindley, D.V.1
-
17
-
-
0022844204
-
Probabilistic versus fuzzy reasoning
-
P. Cheesman Probabilistic versus fuzzy reasoning L.N. Kanal, J.F. Lemmer, Uncertainty in Artificial Intelligence 1986 North-Holland 85 102
-
(1986)
Uncertainty in Artificial Intelligence
, pp. 85-102
-
-
Cheesman, P.1
-
20
-
-
18844443347
-
-
North-Holland, Amsterdam
-
M. Henrion, R.D. Shachter, L.N. Kanal, J.F. Lemmer (Eds.), Uncertainty in Artificial Intelligence 5, North-Holland, Amsterdam, 1990.
-
(1990)
Uncertainty in Artificial Intelligence 5
-
-
Henrion, M.1
Shachter, R.D.2
Kanal, L.N.3
Lemmer, J.F.4
-
23
-
-
0001637134
-
Markov fields and log-linear interaction models for contingency tables
-
J.N. Darroch, S.L. Lauritzen, and T.P. Speed Markov fields and log-linear interaction models for contingency tables Ann. Stat. 8 1980 522 539
-
(1980)
Ann. Stat.
, vol.8
, pp. 522-539
-
-
Darroch, J.N.1
Lauritzen, S.L.2
Speed, T.P.3
-
24
-
-
0000243504
-
Graphical and recursive models for contingency tables
-
N. Wermuth, and S.L. Lauritzen Graphical and recursive models for contingency tables Biometrika 70 1983 537 552
-
(1983)
Biometrika
, vol.70
, pp. 537-552
-
-
Wermuth, N.1
Lauritzen, S.L.2
-
25
-
-
0002384709
-
Conditional independence in statistical theory (with discussion)
-
A.P. Dawid Conditional independence in statistical theory (with discussion) J. R. Stat. Soc. B 41 1979 1 31
-
(1979)
J. R. Stat. Soc. B
, vol.41
, pp. 1-31
-
-
Dawid, A.P.1
-
28
-
-
77956264898
-
Bayesian networks: A model of self-activated memory for evidential reasoning
-
R-43, UCLA Computer Science Department, June 1985
-
J. Pearl, Bayesian networks: a model of self-activated memory for evidential reasoning, Technical Report CSD-850021, R-43, UCLA Computer Science Department, June 1985.
-
Technical Report CSD-850021
-
-
Pearl, J.1
-
29
-
-
0031141157
-
The normative representation of quantified beliefs by belief functions
-
Ph. Smets The normative representation of quantified beliefs by belief functions Artif. Intell. 92 1998 229 242
-
(1998)
Artif. Intell.
, vol.92
, pp. 229-242
-
-
Smets, Ph.1
-
30
-
-
49149147322
-
A logic for default reasoning
-
R. Reiter A logic for default reasoning Artif. Intell. 13 1980 81 132
-
(1980)
Artif. Intell.
, vol.13
, pp. 81-132
-
-
Reiter, R.1
-
31
-
-
0018544688
-
A truth maintenance system
-
J. Doyle A truth maintenance system Artif. Intell. 12 1979 231 272
-
(1979)
Artif. Intell.
, vol.12
, pp. 231-272
-
-
Doyle, J.1
-
32
-
-
0001006209
-
Local computation with probabilities on graphical structures and their application to expert systems
-
S.L. Lauritzen, and D.J. Spiegelhalter Local computation with probabilities on graphical structures and their application to expert systems J. R. Stat. Soc. B 50 1988 157 224
-
(1988)
J. R. Stat. Soc. B
, vol.50
, pp. 157-224
-
-
Lauritzen, S.L.1
Spiegelhalter, D.J.2
-
33
-
-
0010070089
-
-
Working Paper N. 201, School of Business, University of Kansas, Lawrence
-
G. Shafer, P.P. Shenoy, Local computation in hypertrees, Working Paper N. 201, School of Business, University of Kansas, Lawrence, 1988.
-
(1988)
Local Computation in Hypertrees
-
-
Shafer, G.1
Shenoy, P.P.2
-
34
-
-
0025401005
-
The computational complexity of probabilistic inference using Bayesian belief networks
-
G.F. Cooper The computational complexity of probabilistic inference using Bayesian belief networks Artif. Intell. 42 1990 393 405
-
(1990)
Artif. Intell.
, vol.42
, pp. 393-405
-
-
Cooper, G.F.1
-
35
-
-
77955311604
-
Algorithms for approximate probability propagation in Bayesian networks
-
A. Cano, S. Moral, and A. Salmerón Algorithms for approximate probability propagation in Bayesian networks J.A. Gámez, S. Moral, A. Salmerón, Advances in Bayesian Networks 2004 Springer-Verlag Berlin 77 97
-
(2004)
Advances in Bayesian Networks
, pp. 77-97
-
-
Cano, A.1
Moral, S.2
Salmerón, A.3
-
36
-
-
0003473088
-
-
PhD thesis, Dept. Eng. -Econ. Syst., Stanford University, Palo Alto, CA
-
S.M. Olmsted, On representing and solving decision problems, PhD thesis, Dept. Eng. -Econ. Syst., Stanford University, Palo Alto, CA, 1983.
-
(1983)
On Representing and Solving Decision Problems
-
-
Olmsted, S.M.1
-
37
-
-
0022818911
-
Evaluating influence diagrams
-
R.D. Shachter Evaluating influence diagrams Oper. Res. 34 6 1986 871 882
-
(1986)
Oper. Res.
, vol.34
, Issue.6
, pp. 871-882
-
-
Shachter, R.D.1
-
39
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
C. Chow, and C. Liu Approximating discrete probability distributions with dependence trees IEEE Trans. Inform. Theory 14 1968 462 467
-
(1968)
IEEE Trans. Inform. Theory
, vol.14
, pp. 462-467
-
-
Chow, C.1
Liu, C.2
-
42
-
-
0012062308
-
Kutato: An entropy-driven system for the construction of probabilistic expert systems from databases
-
E.A. Herskovits, and G.F. Cooper Kutato: an entropy-driven system for the construction of probabilistic expert systems from databases P.P. Bonissone, M. Henrion, L.N. Kanal, J.F. Lemmer, Uncertainty in Artificial Intelligence, vol. 6 1991 North-Holland 117 125
-
(1991)
Uncertainty in Artificial Intelligence, Vol. 6
, pp. 117-125
-
-
Herskovits, E.A.1
Cooper, G.F.2
-
43
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
G.F. Cooper, and E.A. Herskovits A Bayesian method for the induction of probabilistic networks from data Mach. Learn. 9 1992 309 347
-
(1992)
Mach. Learn.
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.A.2
-
45
-
-
0002480085
-
Graphical models for associations between variables, some of which are qualitative and some quantitative
-
S.L. Lauritzen, and N. Wermuth Graphical models for associations between variables, some of which are qualitative and some quantitative Ann. Stat. 17 1989 31 57
-
(1989)
Ann. Stat.
, vol.17
, pp. 31-57
-
-
Lauritzen, S.L.1
Wermuth, N.2
-
46
-
-
84950442428
-
Propagation of probabilities, means and variances in mixed graphical association models
-
S.L. Lauritzen Propagation of probabilities, means and variances in mixed graphical association models J. Am. Stat. Assoc. 87 1992 1098 1108
-
(1992)
J. Am. Stat. Assoc.
, vol.87
, pp. 1098-1108
-
-
Lauritzen, S.L.1
-
47
-
-
0041377763
-
Stable local computation with conditional Gaussian distributions
-
S.L. Lauritzen, and F.V. Jensen Stable local computation with conditional Gaussian distributions Stat. Comput. 11 2001 191 203
-
(2001)
Stat. Comput.
, vol.11
, pp. 191-203
-
-
Lauritzen, S.L.1
Jensen, F.V.2
-
48
-
-
0003846045
-
Learning Bayesian networks
-
Microsoft Research, Redmond, WA, December 1994. URL
-
D. Heckerman, D. Geiger, Learning Bayesian networks, Technical Report MSR-TR-95-02, Microsoft Research, Redmond, WA, December 1994. URL http://citeseer.ist.psu.edu/article/heckerman95learning.html.
-
Technical Report MSR-TR-95-02
-
-
Heckerman, D.1
Geiger, D.2
-
50
-
-
0042192817
-
Hugin - A shell for building Bayesian belief universes for expert systems
-
G. Shafer, J. Pearl (Eds.) Morgan Kaufmann
-
S.K. Andersen, K.G. Olesen, F.V. Jensen, F. Jensen, Hugin - a shell for building Bayesian belief universes for expert systems, in: G. Shafer, J. Pearl (Eds.), Readings in Uncertain Reasoning, Morgan Kaufmann, 1990, pp. 332-337.
-
(1990)
Readings in Uncertain Reasoning
, pp. 332-337
-
-
Andersen, S.K.1
Olesen, K.G.2
Jensen, F.V.3
Jensen, F.4
-
53
-
-
84990553353
-
A model for reasoning about persistence and causation
-
T. Dean, and K. Kanazawa A model for reasoning about persistence and causation Comput. Intell. 5 1989 142 150
-
(1989)
Comput. Intell.
, vol.5
, pp. 142-150
-
-
Dean, T.1
Kanazawa, K.2
-
58
-
-
21244437975
-
Editorial of the special issue on probabilistic graphical models in classification
-
P. Larrañaga, J.A. Lozano, J.M. Peña, and I. Inza Editorial of the special issue on probabilistic graphical models in classification Mach. Learn. 59 2005 211 212
-
(2005)
Mach. Learn.
, vol.59
, pp. 211-212
-
-
Larrañaga, P.1
Lozano, J.A.2
Peña, J.M.3
Inza, I.4
-
60
-
-
84937350040
-
Steps toward artificial intelligence
-
M. Minsky Steps toward artificial intelligence Trans. Inst. Radio Eng. 49 1961 8 30
-
(1961)
Trans. Inst. Radio Eng.
, vol.49
, pp. 8-30
-
-
Minsky, M.1
-
61
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
P. Domingos, and M.J. Pazzani On the optimality of the simple Bayesian classifier under zero-one loss Mach. Learn. 29 2-3 1997 103 130
-
(1997)
Mach. Learn.
, vol.29
, Issue.23
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.J.2
-
62
-
-
0035528674
-
Idiot's Bayes - Not so stupid after all?
-
D.J. Hand, and K. You Idiot's Bayes - not so stupid after all? Int. Stat. Rev. 69 2001 385 398
-
(2001)
Int. Stat. Rev.
, vol.69
, pp. 385-398
-
-
Hand, D.J.1
You, K.2
-
65
-
-
21144449857
-
Interval estimation naïve Bayes
-
Springer-Verlag
-
V. Robles, P. Larrañaga, J.M. Peña, E. Menasalvas, and M.S. Pérez Interval estimation naïve Bayes Lecture Notes in Computer Science, vol. 2810 2003 Springer-Verlag 143 154
-
(2003)
Lecture Notes in Computer Science, Vol. 2810
, pp. 143-154
-
-
Robles, V.1
Larrañaga, P.2
Peña, J.M.3
Menasalvas, E.4
Pérez, M.S.5
-
73
-
-
0042830813
-
Floating search algorithms for structure learning of Bayesian network classifiers
-
F. Pernkopf, and P. O'Leary Floating search algorithms for structure learning of Bayesian network classifiers Pattern Recogn. Lett. 24 15 2003 2839 2848
-
(2003)
Pattern Recogn. Lett.
, vol.24
, Issue.15
, pp. 2839-2848
-
-
Pernkopf, F.1
O'Leary, P.2
-
74
-
-
4744353182
-
Restricted Bayesian network structure learning
-
Springer-Verlag
-
P.J.F. Lucas Restricted Bayesian network structure learning Advances in Bayesian Networks 2004 Springer-Verlag 217 234
-
(2004)
Advances in Bayesian Networks
, pp. 217-234
-
-
Lucas, P.J.F.1
-
79
-
-
0041683329
-
On predictive distributions and Bayesian networks
-
P. Kontkanen, P. Myllymäki, T. Silander, H. Tirri, and P. Grünwald On predictive distributions and Bayesian networks Stat. Comput. 10 2000 39 54
-
(2000)
Stat. Comput.
, vol.10
, pp. 39-54
-
-
Kontkanen, P.1
Myllymäki, P.2
Silander, T.3
Tirri, H.4
Grünwald, P.5
-
80
-
-
0344447109
-
Predicting the survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches
-
B. Sierra, and P. Larrañaga Predicting the survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches Artif. Intell. Med. 14 1-2 1998 215 230
-
(1998)
Artif. Intell. Med.
, vol.14
, Issue.12
, pp. 215-230
-
-
Sierra, B.1
Larrañaga, P.2
-
81
-
-
21244444642
-
Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
-
R. Greiner, W. Zhou, X. Su, and B. Shen Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers Mach. Learn. 2005 59
-
(2005)
Mach. Learn.
, pp. 59
-
-
Greiner, R.1
Zhou, W.2
Su, X.3
Shen, B.4
-
83
-
-
21244467519
-
On discriminative Bayesian network classifiers and logistic regression
-
T. Roos, H. Wetting, P. Grünwald, P. Myllymäki, and H. Tirri On discriminative Bayesian network classifiers and logistic regression Mach. Learn. 2005 59
-
(2005)
Mach. Learn.
, pp. 59
-
-
Roos, T.1
Wetting, H.2
Grünwald, P.3
Myllymäki, P.4
Tirri, H.5
-
85
-
-
0000014486
-
Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications
-
E. Forgy Cluster analysis of multivariate data: efficiency vs. interpretability of classifications Biometrics 21 1965 768 769
-
(1965)
Biometrics
, vol.21
, pp. 768-769
-
-
Forgy, E.1
-
87
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A.P. Dempster, N.M. Laird, and D.B. Rubin Maximum likelihood from incomplete data via the EM algorithm J. R. Stat. Soc. B 39 1 1977 1 38
-
(1977)
J. R. Stat. Soc. B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
91
-
-
0031272327
-
Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables
-
D.M. Chickering, and D. Heckerman Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables Mach. Learn. 29 1997 181 212
-
(1997)
Mach. Learn.
, vol.29
, pp. 181-212
-
-
Chickering, D.M.1
Heckerman, D.2
-
92
-
-
58149210716
-
The em algorithm for graphical association models with missing data
-
S.L. Lauritzen The EM algorithm for graphical association models with missing data Comput. Stat. Data Anal. 19 1995 191 201
-
(1995)
Comput. Stat. Data Anal.
, vol.19
, pp. 191-201
-
-
Lauritzen, S.L.1
-
94
-
-
84898959728
-
Estimating dependency structure as a hidden variable
-
M. Meil, and M.I. Jordan Estimating dependency structure as a hidden variable Neural Inform. Process. Syst. 1998 584 590
-
(1998)
Neural Inform. Process. Syst.
, pp. 584-590
-
-
Meil, M.1
Jordan, M.I.2
-
95
-
-
17144463341
-
Learning Bayesian networks for clustering by means of constructive induction
-
J.M. Peña, J.A. Lozano, and P. Larrañaga Learning Bayesian networks for clustering by means of constructive induction Pattern Recogn. Lett. 20 11-13 1999 1219 1230
-
(1999)
Pattern Recogn. Lett.
, vol.20
, Issue.1113
, pp. 1219-1230
-
-
Peña, J.M.1
Lozano, J.A.2
Larrañaga, P.3
-
96
-
-
0033685826
-
An improved Bayesian structural em algorithm for learning Bayesian networks for clustering
-
J.M. Peña, J.A. Lozano, and P. Larrañaga An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering Pattern Recogn. Lett. 21 8 2000 779 786
-
(2000)
Pattern Recogn. Lett.
, vol.21
, Issue.8
, pp. 779-786
-
-
Peña, J.M.1
Lozano, J.A.2
Larrañaga, P.3
-
97
-
-
0036532762
-
Learning recursive Bayesian multinets for data clustering by means of constructive induction
-
J.M. Peña, J.A. Lozano, and P. Larrañaga Learning recursive Bayesian multinets for data clustering by means of constructive induction Mach. Learn. 47 2002 63 89
-
(2002)
Mach. Learn.
, vol.47
, pp. 63-89
-
-
Peña, J.M.1
Lozano, J.A.2
Larrañaga, P.3
-
99
-
-
26944460634
-
Abductive inference in Bayesian networks: A review
-
J.A. Gámez Abductive inference in Bayesian networks: a review J.A. Gámez, S. Moral, A. Salmerón, Advances in Bayesian Networks 2004 Springer-Verlag 101 120
-
(2004)
Advances in Bayesian Networks
, pp. 101-120
-
-
Gámez, J.A.1
-
100
-
-
0028483915
-
Finding MAPs for belief networks is NP-hard
-
S.E. Shimony Finding MAPs for belief networks is NP-hard Artif. Intell. 68 1994 399 410
-
(1994)
Artif. Intell.
, vol.68
, pp. 399-410
-
-
Shimony, S.E.1
-
101
-
-
0003064380
-
Applications of a general propagation algorithm for probabilistic expert systems
-
A.P. Dawid Applications of a general propagation algorithm for probabilistic expert systems Stat. Comput. 2 1992 25 36
-
(1992)
Stat. Comput.
, vol.2
, pp. 25-36
-
-
Dawid, A.P.1
-
102
-
-
0006776658
-
An efficient algorithm for finding the M most probable configurations in probabilistic expert systems
-
D. Nilsson An efficient algorithm for finding the M most probable configurations in probabilistic expert systems Stat. Comput. 8 1998 159 173
-
(1998)
Stat. Comput.
, vol.8
, pp. 159-173
-
-
Nilsson, D.1
-
104
-
-
26944434018
-
Complexity results and approximation strategies for MAP explanations
-
J.D. Park, and A. Darwiche Complexity results and approximation strategies for MAP explanations J. Artif. Intell. Res. 21 2004 101 133
-
(2004)
J. Artif. Intell. Res.
, vol.21
, pp. 101-133
-
-
Park, J.D.1
Darwiche, A.2
-
105
-
-
26944484635
-
On the problem of performing exact partial abductive inference in Bayesian belief networks using junction trees
-
L.M. de Campos, J.A. Gámez, and S. Moral On the problem of performing exact partial abductive inference in Bayesian belief networks using junction trees B. Bouchon-Meunier, Technologies for Constructing Intelligent Systems 2: Tools 2002 Springer-Verlag 289 302
-
(2002)
Technologies for Constructing Intelligent Systems 2: Tools
, pp. 289-302
-
-
De Campos, L.M.1
Gámez, J.A.2
Moral, S.3
-
107
-
-
0034302667
-
Importance sampling in Bayesian networks using probability trees
-
A. Salmerón, A. Cano, and S. Moral Importance sampling in Bayesian networks using probability trees Comput. Stat. Data Anal. 34 2000 387 413
-
(2000)
Comput. Stat. Data Anal.
, vol.34
, pp. 387-413
-
-
Salmerón, A.1
Cano, A.2
Moral, S.3
-
108
-
-
26944464792
-
Partial abductive inference in Bayesian networks by using probability trees
-
L.M. de Campos, J.A. Gámez, and S. Moral Partial abductive inference in Bayesian networks by using probability trees O. Camp, Enterprise Information Systems V 2004 Kluwer Academic Publishers 146 154
-
(2004)
Enterprise Information Systems v
, pp. 146-154
-
-
De Campos, L.M.1
Gámez, J.A.2
Moral, S.3
-
109
-
-
85012612291
-
A comparison of decision analysis and expert rules for sequential analysis
-
North-Holland New York
-
J. Kalagnanam, and M. Henrion A comparison of decision analysis and expert rules for sequential analysis Uncertainty in Artificial Intelligence, vol. 4 1990 North-Holland New York pp. 271-281
-
(1990)
Uncertainty in Artificial Intelligence, Vol. 4
-
-
Kalagnanam, J.1
Henrion, M.2
-
112
-
-
84907265801
-
Composite graphical models for reasoning about uncertainties, feasibilities, and utilities
-
C. Pralet, G. Verfaillie, T. Schiex, Composite graphical models for reasoning about uncertainties, feasibilities, and utilities, in: 7th International CP-05 Workshop on Preferences and Soft Constraints, 2005. URL http://www.laas.fr/cpralet/praletverfschiex.ps.
-
(2005)
7th International CP-05 Workshop on Preferences and Soft Constraints
-
-
Pralet, C.1
Verfaillie, G.2
Schiex, T.3
-
117
-
-
1842732640
-
Multi-stage Monte Carlo method for solving influence diagrams using local computation
-
J. Charnes, and P.P. Shenoy Multi-stage Monte Carlo method for solving influence diagrams using local computation Manage. Sci. 50 2004 405 418
-
(2004)
Manage. Sci.
, vol.50
, pp. 405-418
-
-
Charnes, J.1
Shenoy, P.P.2
-
118
-
-
33645979713
-
A forward-backward Monte Carlo method for solving influence diagrams
-
A. Cano, M. Gómez-Olmedo, and S. Moral A forward-backward Monte Carlo method for solving influence diagrams Int. J. Approx. Reason. 42 2006 119 135
-
(2006)
Int. J. Approx. Reason.
, vol.42
, pp. 119-135
-
-
Cano, A.1
Gómez-Olmedo, M.2
Moral, S.3
-
120
-
-
0033361457
-
A comparison of graphical techniques for asymmetric decision problems
-
C. Bielza, and P.P. Shenoy A comparison of graphical techniques for asymmetric decision problems Manage. Sci. 45 1999 1552 1569
-
(1999)
Manage. Sci.
, vol.45
, pp. 1552-1569
-
-
Bielza, C.1
Shenoy, P.P.2
-
125
-
-
0141503453
-
Multi-agent influence diagrams for representing and solving games
-
D. Koller, and B. Milch Multi-agent influence diagrams for representing and solving games Games Econ. Behav. 45 1 2003 181 221 (full version of paper in IJCAI '03)
-
(2003)
Games Econ. Behav.
, vol.45
, Issue.1
, pp. 181-221
-
-
Koller, D.1
Milch, B.2
-
126
-
-
0002763562
-
Linkage information processing in distribution estimation algorithms
-
P.A. Bosman, and D. Thierens Linkage information processing in distribution estimation algorithms W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, R.E. Smith, Proceedings of the Genetic and Evolutionary Computation Conference GECCO-1999, vol. I 1999 Morgan Kaufmann San Francisco, CA 60 67
-
(1999)
Proceedings of the Genetic and Evolutionary Computation Conference GECCO-1999, Vol. i
, pp. 60-67
-
-
Bosman, P.A.1
Thierens, D.2
-
129
-
-
84958959530
-
From recombination of genes to the estimation of distributions I. Binary parameters
-
H. Mühlenbein, and G. Paaß From recombination of genes to the estimation of distributions I. Binary parameters H.-M. Voigt, W. Ebeling, I. Rechenberg, H.-P. Schwefel, Parallel Problem Solving from Nature - PPSN IV 1996 Springer-Verlag Berlin 178 187 LNCS 1141
-
(1996)
Parallel Problem Solving from Nature - PPSN IV
, pp. 178-187
-
-
Mühlenbein, H.1
Paaß, G.2
-
131
-
-
0003984832
-
Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning
-
Carnegie Mellon University, Pittsburgh, PA
-
S. Baluja, Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning, Technical Report CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA, 1994.
-
(1994)
Technical Report CMU-CS-94-163
-
-
Baluja, S.1
-
133
-
-
0345504778
-
Schemata, distributions and graphical models in evolutionary optimization
-
H. Mühlenbein, T. Mahnig, and A. Ochoa Schemata, distributions and graphical models in evolutionary optimization J. Heuristics 5 2 1999 213 247
-
(1999)
J. Heuristics
, vol.5
, Issue.2
, pp. 213-247
-
-
Mühlenbein, H.1
Mahnig, T.2
Ochoa, A.3
-
134
-
-
78049265488
-
MIMIC: Finding optima by estimating probability densities
-
J.S. De Bonet, C.L. Isbell, and P. Viola MIMIC: Finding optima by estimating probability densities M.C. Mozer, M.I. Jordan, T. Petsche, Advances in Neural Information Processing Systems, vol. 9 1997 The MIT Press Cambridge 424 430
-
(1997)
Advances in Neural Information Processing Systems, Vol. 9
, pp. 424-430
-
-
De Bonet, J.S.1
Isbell, C.L.2
Viola, P.3
-
135
-
-
0003738581
-
Linkage learning via probabilistic modeling in the EcGA
-
University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL
-
G. Harik, Linkage learning via probabilistic modeling in the EcGA, IlliGAL Report 99010, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, 1999.
-
(1999)
IlliGAL Report 99010
-
-
Harik, G.1
-
136
-
-
0036856506
-
Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms
-
P.A. Bosman, and D. Thierens Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms Int. J. Approx. Reason. 31 3 2002 259 289
-
(2002)
Int. J. Approx. Reason.
, vol.31
, Issue.3
, pp. 259-289
-
-
Bosman, P.A.1
Thierens, D.2
-
140
-
-
23044524193
-
A Factorized Distribution Algorithm using single connected Bayesian networks
-
A. Ochoa, H. Mühlenbein, and M.R. Soto A Factorized Distribution Algorithm using single connected Bayesian networks. LNCS 1917 M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo, H.-P. Schwefel, Parallel Problem Solving from Nature - PPSN VI 6th International Conference Springer-Verlag 2000 787 796
-
(2000)
Parallel Problem Solving from Nature - PPSN VI 6th International Conference
, pp. 787-796
-
-
Ochoa, A.1
Mühlenbein, H.2
Soto, M.R.3
-
141
-
-
0001171707
-
BOA: The Bayesian optimization algorithm
-
M. Pelikan, D.E. Goldberg, and E. Cantú-Paz BOA: The Bayesian optimization algorithm W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, R.E. Smith, Proceedings of the Genetic and Evolutionary Computation Conference GECCO-1999, vol. I Morgan Kaufmann Publishers, San Francisco, CA 1999 525 532
-
(1999)
Proceedings of the Genetic and Evolutionary Computation Conference GECCO-1999, Vol. i
, pp. 525-532
-
-
Pelikan, M.1
Goldberg, D.E.2
Cantú-Paz, E.3
-
145
-
-
0039632408
-
Influence diagrams, Bayesian imperialism, and the Collins case: An appeal to reason
-
W. Edwards Influence diagrams, Bayesian imperialism, and the Collins case: an appeal to reason Cardozo Law Rev. 13 1991 1025 1074
-
(1991)
Cardozo Law Rev.
, vol.13
, pp. 1025-1074
-
-
Edwards, W.1
-
147
-
-
33748801604
-
Computational inference for evidential reasoning in support of judicial proof
-
T.S. Lewit, and B.K. Laskey Computational inference for evidential reasoning in support of judicial proof Cardozo Law Rev. 22 2001 1691 1731
-
(2001)
Cardozo Law Rev.
, vol.22
, pp. 1691-1731
-
-
Lewit, T.S.1
Laskey, B.K.2
-
148
-
-
0037407256
-
Why wasnt O.J. convicted? emotional coherence and legal inference
-
P. Thagart Why wasnt O.J. convicted? emotional coherence and legal inference Cogn. Emotion 17 2003 361 383
-
(2003)
Cogn. Emotion
, vol.17
, pp. 361-383
-
-
Thagart, P.1
-
149
-
-
0036899314
-
Probabilistic expert systems for forensic inference from genetic markers
-
A.P. Dawid, J. Mortera, V.L. Pascali, and D. van Boxel Probabilistic expert systems for forensic inference from genetic markers Scand. J. Stat. 29 2002 577 595
-
(2002)
Scand. J. Stat.
, vol.29
, pp. 577-595
-
-
Dawid, A.P.1
Mortera, J.2
Pascali, V.L.3
Van Boxel, D.4
-
151
-
-
0348134640
-
An object-oriented Bayesian network for estimating mutation rates
-
C.M. Bishop, B.J. Frey (Eds.)
-
A.P. Dawid, An object-oriented Bayesian network for estimating mutation rates, in: C.M. Bishop, B.J. Frey (Eds.), Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, 2003. URL http://research.microsoft.com/conferences/aistats2003/proceedings/188.pdf.
-
(2003)
Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics
-
-
Dawid, A.P.1
-
153
-
-
0037227664
-
How the probability of a false positive affects the value of DNA evidence
-
W.C. Thompson, F. Taroni, and C.G.G. Aitken How the probability of a false positive affects the value of DNA evidence J. Forensic Sci. 48 2003 1357 1360
-
(2003)
J. Forensic Sci.
, vol.48
, pp. 1357-1360
-
-
Thompson, W.C.1
Taroni, F.2
Aitken, C.G.G.3
-
156
-
-
0036358442
-
Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational microarray data
-
C. Yoo, V. Thorsson, and G.F. Cooper Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational microarray data Proceedings of the Pac. Symp. Biocomput. 2002 498 509
-
(2002)
Proceedings of the Pac. Symp. Biocomput.
, pp. 498-509
-
-
Yoo, C.1
Thorsson, V.2
Cooper, G.F.3
-
157
-
-
0842288337
-
Inferring cellular networks using probabilistic graphical models
-
N. Friedman Inferring cellular networks using probabilistic graphical models Science 303 2004 799 805
-
(2004)
Science
, vol.303
, pp. 799-805
-
-
Friedman, N.1
-
159
-
-
0035237805
-
Rich probabilistic models for gene expression
-
E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller Rich probabilistic models for gene expression Bioinformatics 17 2001 243 252
-
(2001)
Bioinformatics
, vol.17
, pp. 243-252
-
-
Segal, E.1
Taskar, B.2
Gasch, A.3
Friedman, N.4
Koller, D.5
-
161
-
-
16844366938
-
Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia
-
P. Sebastiani, M.F. Ramoni, V. Nolan, C.T. Baldwin, and M.H. Steinberg Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia Nat. Genet. 37 2005 435 440
-
(2005)
Nat. Genet.
, vol.37
, pp. 435-440
-
-
Sebastiani, P.1
Ramoni, M.F.2
Nolan, V.3
Baldwin, C.T.4
Steinberg, M.H.5
-
162
-
-
84873656165
-
Bayesian networks for genomic analysis
-
P. Sebastiani, M. Abad, M. Ramoni, Bayesian networks for genomic analysis, in: Genomic Signal Processing and Statistics, EURASIP Book Series on Signal Processing and Communications, 2004, pp. 281-320.
-
(2004)
Genomic Signal Processing and Statistics, EURASIP Book Series on Signal Processing and Communications
, pp. 281-320
-
-
Sebastiani, P.1
Abad, M.2
Ramoni, M.3
-
163
-
-
8344276113
-
Elvira Consortium, Elvira: An environment for probabilistic graphical models
-
Elvira Consortium, Elvira: an environment for probabilistic graphical models, in: J.A. Gámez, A. Salmerón (Eds.) First European Workshop in Probabilistic Graphical Models, 2002, pp. 222-230.
-
(2002)
First European Workshop in Probabilistic Graphical Models
, pp. 222-230
-
-
Gámez, J.A.1
-
164
-
-
84949434688
-
Learning Bayesian belief networks classifiers: Algorithms and systems
-
Springer
-
J. Cheng, R. Greiner, Learning Bayesian belief networks classifiers: algorithms and systems. Lectures Notes in Computer Science, Springer, 2001, pp. 141-151.
-
(2001)
Lectures Notes in Computer Science
, pp. 141-151
-
-
Cheng, J.1
Greiner, R.2
-
165
-
-
0003229133
-
The Bayes net toolbox for Matlab
-
K. Murphy The Bayes net toolbox for Matlab Comput. Sci. Stat. 33 2001 331 350
-
(2001)
Comput. Sci. Stat.
, vol.33
, pp. 331-350
-
-
Murphy, K.1
-
166
-
-
0003470083
-
Bugs: Bayesian inference using Gibbs sampling
-
MRC Biostatistics Unit, Cambridge
-
D.J. Spiedelhalter, A. Thomas, N.G. Best, W. Gilks, Bugs: Bayesian inference using Gibbs sampling, Technical Report, MRC Biostatistics Unit, Cambridge, 1996.
-
(1996)
Technical Report
-
-
Spiedelhalter, D.J.1
Thomas, A.2
Best, N.G.3
Gilks, W.4
-
167
-
-
28844487309
-
Graphical models in R
-
S.L. Lauritzen Graphical models in R R. News 3 2 2002 39
-
(2002)
R. News
, vol.3
, Issue.2
, pp. 39
-
-
Lauritzen, S.L.1
-
168
-
-
2342558377
-
The Javabayes system
-
F.G. Cozman The Javabayes system ISBA Bull. 7 4 2001 16 21
-
(2001)
ISBA Bull.
, vol.7
, Issue.4
, pp. 16-21
-
-
Cozman, F.G.1
-
170
-
-
78751638055
-
-
URL address
-
BayesiaLab, Bayesia Home Page. URL address http://www.bayesia.com/.
-
-
-
-
171
-
-
78751611171
-
-
Home Page. URL address
-
Netica, Norsys Software Corp. Home Page. URL address http://www.norsys. com/netica.html.
-
-
-
-
172
-
-
0038016626
-
Finex: A probabilistic expert system for forensic identification
-
R.G. Cowell Finex: a probabilistic expert system for forensic identification Forensic Sci. Int. 134 2003 196 206
-
(2003)
Forensic Sci. Int.
, vol.134
, pp. 196-206
-
-
Cowell, R.G.1
-
177
-
-
36149021742
-
A theory of cooperative phenomena
-
R. Kikuchi A theory of cooperative phenomena Phys. Rev. 81 6 1951 988 1003
-
(1951)
Phys. Rev.
, vol.81
, Issue.6
, pp. 988-1003
-
-
Kikuchi, R.1
-
178
-
-
15544373328
-
Estimation of distribution algorithms with kikuchi approximations
-
DOI 10.1162/1063656053583496
-
R. Santana Estimation of distribution algorithms with Kikuchi approximations Evol. Comput. 13 1 2005 67 97 (Pubitemid 40402991)
-
(2005)
Evolutionary Computation
, vol.13
, Issue.1
, pp. 67-97
-
-
Santana, R.1
-
179
-
-
0010358630
-
Credal networks
-
F.G. Cozman Credal networks Artif. Intell. 120 2000 199 233
-
(2000)
Artif. Intell.
, vol.120
, pp. 199-233
-
-
Cozman, F.G.1
-
180
-
-
0006451644
-
Interval influence diagrams
-
K.W. Fertig, and J.S. Breese Interval influence diagrams M. Henrion, R.D. Shachter, L.N. Kanal, J.F. Lemmer, Uncertainty in Artificial Intelligence, vol. 5 1990 North-Holland Amsterdam 149 161
-
(1990)
Uncertainty in Artificial Intelligence
, vol.5
, pp. 149-161
-
-
Fertig, K.W.1
Breese, J.S.2
-
181
-
-
0039134297
-
On probability intervals
-
J. Pearl On probability intervals Int. J. Approx. Reason. 2 1988 211 216
-
(1988)
Int. J. Approx. Reason.
, vol.2
, pp. 211-216
-
-
Pearl, J.1
-
182
-
-
0001944630
-
Why is diagnosis using belief networks insensitive to imprecision in probabilities?
-
M. Henrion, M. Pradhan, B. Del Favero, K. Huang, G. Provan, and P. O'Rorke Why is diagnosis using belief networks insensitive to imprecision in probabilities? E. Horvitz, F. Jensen, Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence 1996 307 314
-
(1996)
Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence
, pp. 307-314
-
-
Henrion, M.1
Pradhan, M.2
Del Favero, B.3
Huang, K.4
Provan, G.5
O'Rorke, P.6
-
184
-
-
0141586405
-
A survey of concepts of independence for imprecise probabilities
-
I. Couso, S. Moral, and P. Walley A survey of concepts of independence for imprecise probabilities Risk Decis. Policy 5 2000 165 181
-
(2000)
Risk Decis. Policy
, vol.5
, pp. 165-181
-
-
Couso, I.1
Moral, S.2
Walley, P.3
-
186
-
-
84883246548
-
Inferences from multinomial data: Learning about a bag of marbles (with discussion)
-
P. Walley Inferences from multinomial data: learning about a bag of marbles (with discussion) J. R. Stat. Soc. B 58 1996 3 57
-
(1996)
J. R. Stat. Soc. B
, vol.58
, pp. 3-57
-
-
Walley, P.1
-
188
-
-
0037097254
-
The naive credal classifier
-
M. Zaffalon The naive credal classifier J. Stat. Plan. Infer. 105 2002 5 21
-
(2002)
J. Stat. Plan. Infer.
, vol.105
, pp. 5-21
-
-
Zaffalon, M.1
|