메뉴 건너뛰기




Volumn 42, Issue 1-2, 2006, Pages 119-135

A forward-backward Monte Carlo method for solving influence diagrams

Author keywords

Classification trees; Influence diagrams; Monte Carlo simulation

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; DECISION MAKING; INFERENCE ENGINES; PHASE DIAGRAMS; PROBLEM SOLVING;

EID: 33645979713     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2005.10.009     Document Type: Article
Times cited : (19)

References (32)
  • 1
    • 0033361457 scopus 로고    scopus 로고
    • A comparison of graphical techniques for asymmetric decision problems
    • Bielza C., and Shenoy P.P. A comparison of graphical techniques for asymmetric decision problems. Management Science 45 11 (1999) 1552-1569
    • (1999) Management Science , vol.45 , Issue.11 , pp. 1552-1569
    • Bielza, C.1    Shenoy, P.P.2
  • 2
    • 84956861281 scopus 로고    scopus 로고
    • C. Bielza, S. Ríos-Insua, M. Gómez, Influence diagrams for Neonatal Jaundice Management, in: Artificial Intelligence in Medicine. Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making, Lecture Notes in Computer Science, vol. 1620, 1999, pp. 138-142.
  • 3
    • 33645992408 scopus 로고    scopus 로고
    • C. Boutilier, N. Friedman, M. Goldszmidt, D. Koller, Context-specific independence in Bayesian Networks, in: Proceedings of the 12th Annual Conference on Uncertainty in Artificial Intelligence, Portland, OR, 1996, pp. 115-123.
  • 4
    • 33646015637 scopus 로고    scopus 로고
    • Algorithms for approximate probability propagation in Bayesian Networks
    • Gámez J.A., Moral S., and Salmerón A. (Eds), Physica Verlag
    • Cano A., Moral S., and Salmerón A. Algorithms for approximate probability propagation in Bayesian Networks. In: Gámez J.A., Moral S., and Salmerón A. (Eds). Advances in Bayesian Networks (2003), Physica Verlag 161-173
    • (2003) Advances in Bayesian Networks , pp. 161-173
    • Cano, A.1    Moral, S.2    Salmerón, A.3
  • 5
    • 33646004577 scopus 로고    scopus 로고
    • J.G. Castellano, S. Moral, A. Cano, Árboles de Clasificación Usando una Estimación Bayesiana, in: Actas de la X Conferencia de la Asociación Española para la Inteligencia Artificial, CAEPIA-TTIA 2003, pp. 97-100.
  • 6
    • 1842732640 scopus 로고    scopus 로고
    • Multi-stage Monte Carlo method for solving influence diagrams using local computation
    • Charnes J., and Shenoy P.P. Multi-stage Monte Carlo method for solving influence diagrams using local computation. Management Science 50 3 (2004) 405-418
    • (2004) Management Science , vol.50 , Issue.3 , pp. 405-418
    • Charnes, J.1    Shenoy, P.P.2
  • 7
    • 33645972538 scopus 로고    scopus 로고
    • G.F. Cooper, A method for using belief networks as influence diagrams, in: Proceedings of the 4th Conference on Uncertainty in Artificial Intelligence, Minneapolis, University of Minnesota, 1998, pp. 55-63.
  • 8
    • 8344266084 scopus 로고    scopus 로고
    • M. Gómez, A. Cano, Applying numerical trees to evaluate asymmetric decision problems, in: T.D. Nielsen, N.L. Zhang (Eds.), Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Proceedings of the 7th European Conference, 2003, pp. 196-207.
  • 9
    • 33645963083 scopus 로고    scopus 로고
    • M. Henrion, Propagating uncertainty by logic sampling in Bayes' Networks, in: J. Lemmer, L.N. Kanal (Eds.), Proceedings of the 2nd Conference on Uncertainty in Artificial Intelligence, 1988, pp. 149-164.
  • 12
    • 33645962144 scopus 로고    scopus 로고
    • F. Jensen, F.V. Jensen, D. Dittmer, From influence diagrams to junction trees, in: Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence, 1994, pp. 367-373.
  • 13
    • 33645967427 scopus 로고    scopus 로고
    • F.V. Jensen, T.D. Nielsen, P.P. Shenoy, Sequential influence diagrams: a unified asymmetry framework, in: Proceedings of the Second European Workshop on Probabilistic Graphical Models, 2004, pp. 121-128.
  • 15
    • 33645973642 scopus 로고    scopus 로고
    • A. Jenzarli, Solving influence diagrams using Gibbs sampling, in: Proceedings of the Fifth International Workshop on Artificial Intelligence and Statistics, 1995, pp. 278-284.
  • 16
    • 0035466786 scopus 로고    scopus 로고
    • Representing and solving decision problems with limited information
    • Lauritzen S.L., and Nilsson D. Representing and solving decision problems with limited information. Management Science 47 (2001) 1238-1251
    • (2001) Management Science , vol.47 , pp. 1238-1251
    • Lauritzen, S.L.1    Nilsson, D.2
  • 17
    • 0031660017 scopus 로고    scopus 로고
    • Computer-based decision support in the management of primary gastric non-Hodgkin lymphoma
    • Lucas P., Boot H., and Taal B. Computer-based decision support in the management of primary gastric non-Hodgkin lymphoma. Methods of Information in Medicine 37 (1998) 206-219
    • (1998) Methods of Information in Medicine , vol.37 , pp. 206-219
    • Lucas, P.1    Boot, H.2    Taal, B.3
  • 18
    • 33645974519 scopus 로고    scopus 로고
    • A.L. Madsen, F.V. Jensen, Lazy evaluation of symmetric bayesian decision problems, in: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, 1999, pp. 382-390.
  • 21
    • 33645991156 scopus 로고    scopus 로고
    • T.D. Nielsen, F.V. Jensen, Representing and solving asymmetric Bayesian decision problems, in: C. Boutilier, M. Goldszmidt (Eds.), Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, 2000, pp. 416-425.
  • 22
    • 33645980592 scopus 로고    scopus 로고
    • D. Nilsson, F.V. Jensen, Springer Lecture Notes in Artificial Intelligence: Information, Uncertainty, Fusion, 2000, pp. 161-171 (Chapter: probabilities of future decisions).
  • 23
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Machine Learning 1 (1986) 81-106
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 24
    • 33645998699 scopus 로고    scopus 로고
    • R.D. Shachter, Efficient value of information computation, in: Proceedings of the 15th Conference on Uncertainty and Artificial Intelligence, 1999, pp. 594-601.
  • 25
    • 33646002299 scopus 로고    scopus 로고
    • R.D. Shachter, P.P Ndilikilikesha, Using potential influence diagrams for probabilistic inference and decision making, in: Proceedings of the 9th Conference on Uncertainty and Artificial Intelligence, 1993, pp. 383-390.
  • 26
    • 33645984511 scopus 로고    scopus 로고
    • R.D. Shachter, M.A. Peot, Decision making using probabilistic inference methods, in: Proceedings of the 8th Conference on Uncertainty in Artificial Intelligence, San Jose, 1992, pp. 276-283.
  • 27
    • 0022818911 scopus 로고
    • Evaluating influence diagrams
    • Shachter R.D. Evaluating influence diagrams. Operations Research 34 (1986) 871-882
    • (1986) Operations Research , vol.34 , pp. 871-882
    • Shachter, R.D.1
  • 28
    • 0000251407 scopus 로고
    • Valuation-based systems for Bayesian decision analysis
    • Shenoy P.P. Valuation-based systems for Bayesian decision analysis. Operations Research 40 3 (1992) 463-484
    • (1992) Operations Research , vol.40 , Issue.3 , pp. 463-484
    • Shenoy, P.P.1
  • 30
    • 0027561028 scopus 로고
    • Structuring conditional relationships in influence diagrams
    • Smith J.E., Holtzman S., and Matheson J.E. Structuring conditional relationships in influence diagrams. Operations Research 41 2 (1993) 280-297
    • (1993) Operations Research , vol.41 , Issue.2 , pp. 280-297
    • Smith, J.E.1    Holtzman, S.2    Matheson, J.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.