메뉴 건너뛰기




Volumn 21, Issue 8, 2000, Pages 779-786

An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering

Author keywords

Bayesian networks; Bayesian Structural EM algorithm; Bound and collapse method; Clustering; EM algorithm

Indexed keywords

ALGORITHMS; DATABASE SYSTEMS; LEARNING SYSTEMS; MATHEMATICAL MODELS; OPTIMIZATION; PROBABILITY DISTRIBUTIONS;

EID: 0033685826     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-8655(00)00038-6     Document Type: Article
Times cited : (43)

References (23)
  • 1
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield J., Raftery A. Model-based Gaussian and non-Gaussian clustering. Biometrics. 49:1993;803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.1    Raftery, A.2
  • 3
    • 0002607026 scopus 로고
    • Bayesian classification (AutoClass): Theory and results
    • AAAI Press, Menlo Park, CA
    • Cheeseman, P., Stutz, J., 1995. Bayesian classification (AutoClass): Theory and results. In: Advances in Knowledge Discovery and Data Mining. AAAI Press, Menlo Park, CA, pp. 153-180.
    • (1995) Advances in Knowledge Discovery and Data Mining , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 4
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A., Laird N., Rubin D. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B. 39:1977;1-38.
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 6
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • Fisher D. Knowledge acquisition via incremental conceptual clustering. Machine Learning. 2:1987;139-172.
    • (1987) Machine Learning , vol.2 , pp. 139-172
    • Fisher, D.1
  • 8
    • 0001586968 scopus 로고    scopus 로고
    • Learning belief networks in the presence of missing values and hidden variables
    • Morgan Kaufmann, San Francisco, CA
    • Friedman, N., 1997. Learning belief networks in the presence of missing values and hidden variables. In: Proc. 14th Internat. Conf. on Machine Learning. Morgan Kaufmann, San Francisco, CA.
    • (1997) Proc. 14th Internat. Conf. on Machine Learning
    • Friedman, N.1
  • 13
    • 0002610991 scopus 로고    scopus 로고
    • Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches
    • Ft. Lauderdale, FL
    • Keogh, E.J., Pazzani, M.J., 1999. Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches. In: Proc. Seventh Internat. Workshop on Artificial Intelligence and Statistics. Ft. Lauderdale, FL, pp. 225-230.
    • (1999) Proc. Seventh Internat. Workshop on Artificial Intelligence and Statistics , pp. 225-230
    • Keogh, E.J.1    Pazzani, M.J.2
  • 15
    • 0001788080 scopus 로고    scopus 로고
    • An experimental comparison of several clustering and initialization methods
    • Morgan Kaufmann, San Francisco, CA
    • Meila, M., Heckerman, D., 1998. An experimental comparison of several clustering and initialization methods. In: Proc. 14th Conf. on Uncertainty in Artificial Intelligence. Morgan Kaufmann, San Francisco, CA, pp. 386-395.
    • (1998) Proc. 14th Conf. on Uncertainty in Artificial Intelligence , pp. 386-395
    • Meila, M.1    Heckerman, D.2
  • 16
    • 84898959728 scopus 로고    scopus 로고
    • Estimating dependency structure as a hidden variable
    • Meila M., Jordan M.I. Estimating dependency structure as a hidden variable. Neural Inform. Process. Syst. 10:1997;584-590.
    • (1997) Neural Inform. Process. Syst. , vol.10 , pp. 584-590
    • Meila, M.1    Jordan, M.I.2
  • 17
    • 84965058332 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California, Irvine
    • Merz, C., Murphy, P., Aha, D., 1997. UCI repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, http://www.ics.uci.edu/mlearn/MLRepository.html.
    • (1997) UCI Repository of Machine Learning Databases
    • Merz, C.1    Murphy, P.2    Aha, D.3
  • 19
    • 17144463341 scopus 로고    scopus 로고
    • Learning Bayesian networks for clustering by means of constructive induction
    • Peña J.M., Lozano J.A., Larrañaga P. Learning Bayesian networks for clustering by means of constructive induction. Pattern Recognition Lett. 20(11-13):1999;1219-1230.
    • (1999) Pattern Recognition Lett. , vol.20 , Issue.1113 , pp. 1219-1230
    • Peña, J.M.1    Lozano, J.A.2    Larrañaga, P.3
  • 20
    • 4244114433 scopus 로고    scopus 로고
    • Learning recursive Bayesian multinets for clustering by means of constructive induction
    • accepted
    • Peña, J.M., Lozano, J.A., Larrañaga, P., 2000. Learning recursive Bayesian multinets for clustering by means of constructive induction. Machine Learning, accepted.
    • (2000) Machine Learning
    • Peña, J.M.1    Lozano, J.A.2    Larrañaga, P.3
  • 22
    • 0003250080 scopus 로고    scopus 로고
    • Parameter estimation in Bayesian networks from incomplete databases
    • Ramoni M., Sebastiani P. Parameter estimation in Bayesian networks from incomplete databases. Intelligent Data Analysis. 2(1):1998.
    • (1998) Intelligent Data Analysis , vol.2 , Issue.1
    • Ramoni, M.1    Sebastiani, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.