-
1
-
-
0027453616
-
Model-based Gaussian and non-Gaussian clustering
-
Banfield J., Raftery A. Model-based Gaussian and non-Gaussian clustering. Biometrics. 49:1993;803-821.
-
(1993)
Biometrics
, vol.49
, pp. 803-821
-
-
Banfield, J.1
Raftery, A.2
-
3
-
-
0002607026
-
Bayesian classification (AutoClass): Theory and results
-
AAAI Press, Menlo Park, CA
-
Cheeseman, P., Stutz, J., 1995. Bayesian classification (AutoClass): Theory and results. In: Advances in Knowledge Discovery and Data Mining. AAAI Press, Menlo Park, CA, pp. 153-180.
-
(1995)
Advances in Knowledge Discovery and Data Mining
, pp. 153-180
-
-
Cheeseman, P.1
Stutz, J.2
-
6
-
-
0343442766
-
Knowledge acquisition via incremental conceptual clustering
-
Fisher D. Knowledge acquisition via incremental conceptual clustering. Machine Learning. 2:1987;139-172.
-
(1987)
Machine Learning
, vol.2
, pp. 139-172
-
-
Fisher, D.1
-
7
-
-
0030359493
-
Building classifiers using Bayesian networks
-
AAAI Press, Menlo Park, CA
-
Friedman, N., Goldszmidt, M., 1996. Building classifiers using Bayesian networks. In: Proc. 13th National Conf. on Artificial Intelligence. AAAI Press, Menlo Park, CA, pp. 1277-1284.
-
(1996)
Proc. 13th National Conf. on Artificial Intelligence
, pp. 1277-1284
-
-
Friedman, N.1
Goldszmidt, M.2
-
8
-
-
0001586968
-
Learning belief networks in the presence of missing values and hidden variables
-
Morgan Kaufmann, San Francisco, CA
-
Friedman, N., 1997. Learning belief networks in the presence of missing values and hidden variables. In: Proc. 14th Internat. Conf. on Machine Learning. Morgan Kaufmann, San Francisco, CA.
-
(1997)
Proc. 14th Internat. Conf. on Machine Learning
-
-
Friedman, N.1
-
13
-
-
0002610991
-
Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches
-
Ft. Lauderdale, FL
-
Keogh, E.J., Pazzani, M.J., 1999. Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches. In: Proc. Seventh Internat. Workshop on Artificial Intelligence and Statistics. Ft. Lauderdale, FL, pp. 225-230.
-
(1999)
Proc. Seventh Internat. Workshop on Artificial Intelligence and Statistics
, pp. 225-230
-
-
Keogh, E.J.1
Pazzani, M.J.2
-
15
-
-
0001788080
-
An experimental comparison of several clustering and initialization methods
-
Morgan Kaufmann, San Francisco, CA
-
Meila, M., Heckerman, D., 1998. An experimental comparison of several clustering and initialization methods. In: Proc. 14th Conf. on Uncertainty in Artificial Intelligence. Morgan Kaufmann, San Francisco, CA, pp. 386-395.
-
(1998)
Proc. 14th Conf. on Uncertainty in Artificial Intelligence
, pp. 386-395
-
-
Meila, M.1
Heckerman, D.2
-
16
-
-
84898959728
-
Estimating dependency structure as a hidden variable
-
Meila M., Jordan M.I. Estimating dependency structure as a hidden variable. Neural Inform. Process. Syst. 10:1997;584-590.
-
(1997)
Neural Inform. Process. Syst.
, vol.10
, pp. 584-590
-
-
Meila, M.1
Jordan, M.I.2
-
17
-
-
84965058332
-
-
Department of Information and Computer Science, University of California, Irvine
-
Merz, C., Murphy, P., Aha, D., 1997. UCI repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, http://www.ics.uci.edu/mlearn/MLRepository.html.
-
(1997)
UCI Repository of Machine Learning Databases
-
-
Merz, C.1
Murphy, P.2
Aha, D.3
-
19
-
-
17144463341
-
Learning Bayesian networks for clustering by means of constructive induction
-
Peña J.M., Lozano J.A., Larrañaga P. Learning Bayesian networks for clustering by means of constructive induction. Pattern Recognition Lett. 20(11-13):1999;1219-1230.
-
(1999)
Pattern Recognition Lett.
, vol.20
, Issue.1113
, pp. 1219-1230
-
-
Peña, J.M.1
Lozano, J.A.2
Larrañaga, P.3
-
20
-
-
4244114433
-
Learning recursive Bayesian multinets for clustering by means of constructive induction
-
accepted
-
Peña, J.M., Lozano, J.A., Larrañaga, P., 2000. Learning recursive Bayesian multinets for clustering by means of constructive induction. Machine Learning, accepted.
-
(2000)
Machine Learning
-
-
Peña, J.M.1
Lozano, J.A.2
Larrañaga, P.3
-
21
-
-
0002343164
-
Learning Bayesian networks from incomplete databases
-
Morgan Kaufmann, San Mateo, CA
-
Ramoni, M., Sebastiani, P., 1997. Learning Bayesian networks from incomplete databases. In: Proc. 13th Conf. on Uncertainty in Artificial Intelligence. Morgan Kaufmann, San Mateo, CA.
-
(1997)
Proc. 13th Conf. on Uncertainty in Artificial Intelligence
-
-
Ramoni, M.1
Sebastiani, P.2
-
22
-
-
0003250080
-
Parameter estimation in Bayesian networks from incomplete databases
-
Ramoni M., Sebastiani P. Parameter estimation in Bayesian networks from incomplete databases. Intelligent Data Analysis. 2(1):1998.
-
(1998)
Intelligent Data Analysis
, vol.2
, Issue.1
-
-
Ramoni, M.1
Sebastiani, P.2
-
23
-
-
0002964176
-
Learning mixtures of DAG models
-
Morgan Kaufmann, San Francisco, CA
-
Thiesson, B., Meek, C., Chickering, D.M., Heckerman, D., 1998. Learning mixtures of DAG models. In: Proc. 14th Conf. on Uncertainty in Artificial Intelligence. Morgan Kaufmann, San Francisco, CA, pp. 504-513.
-
(1998)
Proc. 14th Conf. on Uncertainty in Artificial Intelligence
, pp. 504-513
-
-
Thiesson, B.1
Meek, C.2
Chickering, D.M.3
Heckerman, D.4
|